双四维时空的量子力学描述(量子力学曲率诠释)
Describe Quantum Mechanics in the Dual 4-Dimensional Complex Space-Time
DOI: 10.12677/MP.2013.35022, PDF,  被引量 下载: 4,182  浏览: 13,781 
作者: 赵国求*:湖北省华夏基础科学研究院,武汉
关键词: 微观客体物质球物质波曲率概率实在Micro-Object; Matter Ball; Matter Waves; Curvature; Probability; Indeed
摘要: 自旋是微观客体的固有属性。微观客体是“限制在一定分布空间的转动场物质球”,转动频率由定义,曲率半径由定义,存在于双4维复数空间。微观客体的旋转与运动生成物质波。物质波传播微观客体空间结构及物质场宻度分布的波动信息。复数时空曲率坐标的建立,是微观客体自身物质的几何化。物质波是实在的,物质场宻度分布与概率分布可以相互映射,微观客体的非点特性及其旋转振动是量子测量中微观客体概率事件的物理源头。
Abstract: Spin is the inherent attribute of the micro-object. Micro-object can be understood as a rotating matter ball which is limited in a certain spatial distribution that can not be appropriately abstracted as a particle in the mi-cro-environment. The rotation frequency is defined by , radius of curvature is defined by. Mi-cro-object exists in the dual 4-dimensional complex space-time. The rotation and movement of the micro-object gener-ate matter waves. Information of space structure and matter field density distribution of the micro-object can be propa-gated by matter waves. The establishment of complex space-time curvature coordinate is a geometric matter of mi-cro-object itself (geometry of matter). Matter waves are real. Matter field density distribution and probability distribu-tion of micro-object can be mutual mapped, micro-object can not be appropriately abstracted as a particle and its rotat-ing and vibration are the physical source of micro-object probability event in quantum measurement.
文章引用:赵国求. 双四维时空的量子力学描述(量子力学曲率诠释)[J]. 现代物理, 2013, 3(5): 147-160. http://dx.doi.org/10.12677/MP.2013.35022

参考文献

[1] 坂田昌一 (2001) 安度, 译. 坂田昌—科学哲学论文集. 知识出版社, 上海, 140.
[2] 雷内•托姆 (1989) 周仲良, 译. 突变论:思想和应用. 上海译文出版社, 上海, 215-280.
[3] 赵国求, 李康, 吴国林 (2013) 量子力学曲率诠释论纲. 武汉理工大学学报, 1, 60-67.
[4] 薛定谔, 著 (2007) 范岱年, 胡新和, 译. 薛定谔讲演录. 北京大学出版社, 北京, 8, 9, 12.
[5] 瑞德尼克, B.N., 著 (1979) 黄宏荃, 彭灏, 译. 量子力学史话. 科学出版社, 北京, 66.
[6] 沈惠川 (1992) 德布罗意的非线性波动力学. 自然杂志, 8, 620-626.
[7] 雅默, M. (1989) 秦克诚, 译. 量子力学的哲学. 商务印书馆, 北京, 52-55, 67-99, 328.
[8] 赵国求 (2008) 从相互作用实在到量子力学曲率解释. 武汉出版社, 武汉, 37-40, 337, 433.
[9] 曹天予 (2012) 国际量子力学基础热点研究与曲率解释专题讨论会报告. 武汉, 2012.
[10] Bjorken, A.D., et al. (1984) 相对论量子力学.科学出版社, 北京.
[11] Li, K., Wang, J.H., Dulat, S. and Ma, K. (2010) Wigner func- tions for Klein-Gordon oscillators in non-commutative space. International Journal of Theoretical Physics, 49, 134-143.
[12] 张永德 (2012) 量子菜根谭. 清华大学出版社, 北京, 51-62, 137.
[13] 韦斯科夫, V.F., 著 (1979) 杨福家等, 译. 二十世纪物理学.科学出版社, 北京, 72-96.
[14] Cao, T.Y. (2010) From current algebra to quantum chromody- namics: A case for structural realism. Cambridge University Press, Cambridge, 202-241.
[15] 张镇九 (1997) 相对论物理学. 华中师范大学出版社, 武汉, 109.