夹心层结构的纳米银复合粒子的缓释抑菌性
Prolonged Antimicrobial Activity of Unique Sandwich-Structured Silver Nanocomposites
DOI: 10.12677/NAT.2014.42004, PDF, HTML,  被引量 下载: 3,286  浏览: 10,280  国家自然科学基金支持
作者: 宋 笑, 申媛媛:商船学院,上海海事大学,上海;刘 涛, 董丽华, 董耀华:材料科学与工程研究院,上海海事大学,上海;郭章伟:水产生命学院,上海海洋大学,上海
关键词: 纳米复合粒子多巴胺抑菌性能结构Silver Nanocomposite Dopamine Antibacterial Activity Structure
摘要: 本文为了证明纳米颗粒的结构对抑菌性能具有很大的影响效果,制备出了三种不同结构的纳米银复合粒子。它们分别是:(1) 通过还原银离子制备纳米银颗粒,并使其包覆在二氧化硅聚多巴胺球形颗粒表面形成复合粒子(SiO2/PD/Ag)(2) 将纳米银颗粒负载在球形介孔二氧化硅内,形成核壳结构的复合粒子(Ag@MSN)(3) 纳米银颗粒既粘附在二氧化硅球形表面又封装在二氧化硅内层而形成的具有独特夹心层结构的复合粒子(Ag@MSN/PD-Ag)。采用革兰氏阴性菌需钠弧菌的生长曲线来测试三种粒子的抑菌性能。实验结果表明,在最初的三天里,SiO2/PD/AgAg@MSN对需钠弧菌抑制效果更好,但是接下来的七天,Ag@MSN对需钠弧菌更为敏感,而Ag@MSN/PD-Ag在整个十天的抑菌测试中一直都是对需钠弧菌最为敏感。
Abstract: In this study, silver nanocomposites with three different structures were prepared to confirm that structure has a significant influence on the antibacterial properties. Ag nanoparticles were prepared by the following three methods: 1) by deposition of Ag on the surface of silica-polydopamine spheres by reducing Ag cations (SiO2/PD/Ag); 2) by encapsulation of Ag NPs in mesoporous SiO2 with a core- shell structure (Ag@MSN); and 3) Ag nanocrystals were both decorated on the surface of SiO2 and incorporated into its mesoporous structure (Ag@MSN/PD-Ag). The antibacterial activities of these particles were evaluated through bacterial growth curves. The results demonstrated that in the first three days, the effect of SiO2/PD/Ag was more intense on V. natriegens compared with Ag@MSN; however, the next seven days revealed the opposite result. Therefore, Ag@MSN/PD-Ag exhibited the most effective antimicrobial treatments for ten days.
文章引用:宋笑, 刘涛, 董丽华, 郭章伟, 董耀华, 申媛媛. 夹心层结构的纳米银复合粒子的缓释抑菌性[J]. 纳米技术, 2014, 4(2): 17-22. http://dx.doi.org/10.12677/NAT.2014.42004

参考文献

[1] Jankiewicz, B.J., Jamiola, D., Choma, J., Jaroniec, M. (2012) Silica-metal core-shell nanostructures. Advances in Colloid and Interface Science, 170, 28-47.
[2] Taglietti, A., Diaz Fernandez, Y.A., Amato, E., Cucca, L., Dacarro, G., et al. (2012) Antibacterial activity of glutathione-coated silver nanoparticles against gram positive and gram negative bacteria. Langmuir, 28, 8140-8148.
[3] Zhang, L., Wu, J.J., Wang, Y.X., Long, Y.H., Zhao, N. and Xu, J. (2012) Combination of bioinspiration: A general route to superhydrophobic particles. Journal of the American Chemical Society, 134, 9879-9881.
[4] Ivanova, T., Harizanova, A., Koutzarova, T., Vertruyen, B. (2013) Optical and Structural Characterization of TiO2 Films Doped with Silver Nanoparticles Obtained by Sol-Gel Method. Optical Materials, 36, 207-213.
[5] Sahoo, S., Husale, S., karna, S., Nayak, S.K. (2011) Controlled assembly of Ag nanoparticles and carbon nanotube hybrid structures for biosensing. Journal of the American Chemical Society, 133, 4005-4009.
[6] Niu, A., Han, Y.J., Wu, J., Yu, N., Xu, Q. (2010)) Synthesis of one-dimensional carbon nanomaterials wrapped by silver nanoparticles and their antibacterial behavior. The Journal of Physical Chemistry C, 114, 12728-12735.
[7] Kong, H. and Jang, J. (2008) Antibacterial properties of novel poly (methyl methacrylate) nanofiber containing silver nanoparticles. Langmuir, 24, 2051-2056.
[8] Kong, H. and Jang, J. (2008) Synthesis and antimicrobial properties of novel silver/polyrhodanine nanofibers. Biomacromolecules, 9, 2677-2681.
[9] Tang, J., Chen, Q., Xu, L., Zhang, S., Feng, L.Z., Xu, H. (2013) Graphene oxide-silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms. ACS Applied Materials Interfaces, 5, 3867-3874.
[10] Xu, W.P, Zhang, L.C., Li, J.P., Lu, Y. and Li, H.H. (2011) Facile synthesis of silver@graphene oxide nanocomposites and their enhanced antibacterial properties. Journal of Materials Chemistry, 21, 4593-4597.
[11] Kobayashi, Y., Salgueirino-Maceira, V. and Liz-Marzan, L.M. (2001) Deposition of silver nanoparticles on silica spheres by pretreatment steps in electroless plating. Chemistry of Materials, 13, 1630-1633.
[12] Tang, S.C., Tang, Y.F., Zhu, S.P., Lu, H.M. and Meng, X.K. (2007) Synthesis and characterization of silica silver core shell composite particles with uniform thin silver layers. Journal of Solid State Chemistry, 180, 2871-2876.
[13] Graf, C. and von Blaaderen, A. (2002) Metallodielectric colloidal core-shell particles for photonic applications. Langmuir, 18, 524-534.
[14] Cassagneau, T. and Caruso, F. (2002) Contiguous silver nanoparticle coatings on dielectric spheres. Advanced Materials, 14, 732-736.
[15] Lee, H., Dellatore, S.M., Miller, W.M. and Messersmith, P.B. (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science, 318, 426-430.
[16] Sagert, J., Sun, C.J. and Waite, J.H. (2006) Chemical subtleties of mussel and polychaete holdfasts. Biological Ad- hesives, 125-143.