|
[1]
|
Insel, T.R. (2010) Rethinking Schizophrenia. Nature, 468, 187-193. http://dx.doi.org/10.1038/nature09552 [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
张立勇, 陈云芳. 抗精神病药对精神分裂症患者认知功能的影响[J]. 临床精神医学杂志, 2005, 15(1): 21-22.
|
|
[3]
|
汪开达. 精神药理学[M]. 北京: 人民卫生出版社, 2007.
|
|
[4]
|
Brunetti, M., Tizio, L.D., Dezi, S., et al. (2012) Aripiprazole, Alcohol and Substance Abuse: A Review. European Review for Medical & Pharmacological Sciences, 16, 1346-1354.
|
|
[5]
|
Henderson, D.C., Fan, X.D., Copeland, P.M., et al. (2009) Aripiprazole Added to Overweight and Obese Olanzapine-Treated Schizo-phrenia Patients. Journal of Clinical Psychopharmacology, 29, 165-169.
http://dx.doi.org/10.1097/JCP.0b013e31819a8dbe [Google Scholar] [CrossRef]
|
|
[6]
|
罗毅, 诸秉根, 杜洁. 利培酮与阿立哌唑治疗精神分裂症的疗效与安全性对比[J]. 现代仪器与医疗, 2015(6): 110-112.
|
|
[7]
|
马帅, 温颖玲, 周伟澄. 2015年美国FDA批准上市的新药简介[J]. 中国医药工业杂志, 2016, 47(1): 79-105.
|
|
[8]
|
Gyertyán, I., Kiss, B., Sághy, K., et al. (2011) Cariprazine (RGH-188), a Potent D3/D2 Dopamine Receptor Partial Agonist, Binds to Dopamine D3 Receptors in Vivo and Shows An-tipsychotic-Like and Procognitive Effects in Rodents. Neurochemistry International, 59, 925-935. http://dx.doi.org/10.1016/j.neuint.2011.07.002 [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
赵爱玲, 赵靖平. 多巴胺和5-羟色胺受体基因多态性与抗精神病药反应[J]. 国外医学: 精神病学分册, 2002(2): 101-104.
|
|
[10]
|
Sumiyoshi, T., Matsui, M., Nohara, S., et al. (2001) En-hancement of Cognitive Performance in Schizophrenia by Addition of Tandospirone to Neuroleptic Treatment. American Journal of Psychiatry, 158, 1722-1725.
http://dx.doi.org/10.1176/appi.ajp.158.10.1722 [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Marek, G. and Merchant, K. (2005) Developing Therapeutics for Schizophrenia and Other Psychotic Disorders. Neurorx, 2, 579-589. http://dx.doi.org/10.1602/neurorx.2.4.579 [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Woods, S., Clarke, N.N., Layfield, R. and Fone, K.C.F. (2012) 5-HT6 Receptor Agonists and Antagonists Enhance Learning and Memory in a Conditioned Emotion Response Paradigm by Mod-ulation of Cholinergic and Glutamatergic Mechanisms. British Journal of Pharmacology, 167, 436-449. http://dx.doi.org/10.1111/j.1476-5381.2012.02022.x [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Dall’Olio, R. and Gandolfi, O. (1993) The NMDA Positive Modulator D-Cycloserine Potentiates the Neuroleptic Activity of D1 and D2 Dopamine Receptor Blockers in the Rat. Psy-chopharmacology, 110, 165-168.
http://dx.doi.org/10.1007/BF02246967 [Google Scholar] [CrossRef]
|
|
[14]
|
Goff, D.C., Tsai, G., Manoach, D.S. and Coyle, JT. (1995) Dose-Finding Trial of D-Cycloserine Added to Neuroleptics for Negative Symptoms in Schizophrenia. The American Journal of Psychiatry, 152, 1213-1215.
http://dx.doi.org/10.1176/ajp.152.8.1213 [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Mezler, M., Geneste, H.L. and Marek, G.J. (2010) LY-2140023, a Pro-drug of the Group II Metabotropic Glutamate Receptor Agonist LY-404039 for the Potential Treatment of Schizophrenia. Current Opinion in Investigational Drugs, 11, 833-845.
|
|
[16]
|
Kinon, B.J., Lu, Z., Millen, B.A., et al. (2011) A Multicenter, Inpatient, Phase 2, Double-Blind, Placebo-Controlled Dose-Ranging Study of LY2140023 Monohydrate in Patients with DSM-IV Schizophrenia. Journal of Clinical Psychopharmacology, 31, 349-355. http://dx.doi.org/10.1097/JCP.0b013e318218dcd5 [Google Scholar] [CrossRef]
|
|
[17]
|
Fulmer, T. (2008) Schizophrenia Develops a Complex. Sci-ence-Business eXchange, 1, 5-6.
http://dx.doi.org/10.1038/scibx.2008.129 [Google Scholar] [CrossRef]
|
|
[18]
|
Mechoulam, R. and Parker, L.A. (2013) The Endocannabinoid System and the Brain. Annual Review of Psychology, 64, 21-47. http://dx.doi.org/10.1146/annurev-psych-113011-143739 [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Hillard, C.J., Weinlander, K.M. and Stuhr, K.L. (2011) Contributions of Endocannabinoid Signaling to Psychiatric Disorders in Humans: Genetic and Biochemical Evidence. Neu-roscience, 204, 207-229.
http://dx.doi.org/10.1016/j.neuroscience.2011.11.020 [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Sewell, R.A., Ranganathan, M. and D’Souza, D.C. (2009) Cannabinoids and Psychosis. International Review of Neurobiology, 21, 152-162. http://dx.doi.org/10.1080/09540260902782802 [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Marco, E.M., García-Gutiérrez, M.S., Bermúdez-Silva, F.J., Moreira, F.A., Guimarães, F., Manzanares, J. and Viveros, M.-P. (2011) Endocannabinoid System and Psychiatry: In Search of a Neurobiological Basis for Detrimental and Potential Therapeutic Effects. Frontiers in Behavioral Neuroscience, 5, 63. http://dx.doi.org/10.3389/fnbeh.2011.00063 [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Zavitsanou, K. and Dalton, V.S. (2011) Paranoid Schizophrenia Is Characterized by Increased CB1 Receptor Binding in the Dorsolateral Prefrontal Cortex. Neuropsychopharmacology, 36, 1620-1630.
http://dx.doi.org/10.1038/npp.2011.43 [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Coulston, C.M., Perdices, M., Henderson, A.F. and Malhi, G.S. (2011) Cannabinoids for the Treatment of Schizophrenia? A Balanced Neurochemical Framework for Both Adverse and Therapeutic Effects of Cannabis Use. Schizophrenia Research & Treatment, 2011, Article ID: 50172.
|
|
[24]
|
Roser, P., Vollenweider, F.X. and Kawohl, W. (2010) Potential Antipsychotic Properties of Central Cannabinoid (CB1) Receptor Antagonists. The World Journal of Biological Psychiatry, 11, 208-219.
http://dx.doi.org/10.3109/15622970801908047 [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Zamberletti, E., Viganò, D., Guidali, C., Rubino, T. and Parolaro, D. (2010) Long-Lasting Recovery of Psychotic-Like Symptoms in Isolation-Reared Rats after Chronic but Not Acute Treatment with the Cannabinoid Antagonist AM251. International Journal of Neuropsychopharmacology, 15, 267-280. http://dx.doi.org/10.1017/S1461145710001185 [Google Scholar] [CrossRef]
|
|
[26]
|
Black, M.D., Stevens, R.J., Rogacki, N., et al. (2010) AVE1625, a Cannabinoid CB1 Receptor Antagonist, as a Co-Treatment with Antipsychotics for Schizophrenia: Improvement in Cognitive Function and Reduction of Antipsychotic-Side Effects in Rodents. Psychopharmacology, 215, 149-163. http://dx.doi.org/10.1007/s00213-010-2124-0 [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Maurice, T. and Su, T.-P. (2009) The Pharmacology of Sigma-1 Receptors. Pharmacology & Therapeutics, 124, 195- 206. http://dx.doi.org/10.1016/j.pharmthera.2009.07.001 [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Paschos, K.A., Stavroula, V. and Ekaterini, C. (2009) Neuro-peptide and Sigma Receptors as Novel Therapeutic Targets for the Pharmacotherapy of Depression. CNS Drugs, 23, 755-772.
http://dx.doi.org/10.2165/11310830-000000000-00000 [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Ishima, T., Fujita, Y., Kohno, M., et al. (2009) Improvement of Phencyclidine Induced Cognitive Deficits in Mice by Subsequent Subchronic Administration of Fluvoxamine, but Not Sertraline. The Open Clinical Chemistry Journal, 2, 7-11. http://dx.doi.org/10.2174/1874241600902010007 [Google Scholar] [CrossRef]
|
|
[30]
|
Kunitachi, S., Fujita, Y., Ishima, T., Kohno, M., Horio, M., Tanibuchi, Y., Shirayama, Y., Iyo, M. and Hashimoto, K. (2014) Phencyclidine-Induced Cognitive Deficits in Mice Are Ameliorated by Subsequent Subchronic Administration of Donepezil: Role of Sigma-1 Receptors. Brain Research, 1279, 189-196.
|
|
[31]
|
Tomihisa, N., Masaomi, I. and Kenji, H. (2012) Sigma-1 Receptor Agonists as Therapeutic Drugs for Cognitive Impairment in Neuropsychiatric Diseases. Current Pharmaceutical Design, 18, 875-883.
http://dx.doi.org/10.2174/138161212799436476 [Google Scholar] [CrossRef] [PubMed]
|