|
[1]
|
Clayton, A.H., Tourian, K.A., Focht, K., et al. (2015) Desvenlafaxine 50 and 100 mg/d versus Placebo for the Treatment of Major Depressive Disorder: A Phase 4, Randomized Controlled Trial. Journal of Clinical Psychiatry, 76, 562- 569. http://dx.doi.org/10.4088/JCP.13m08978 [Google Scholar] [CrossRef]
|
|
[2]
|
Palmer, E.C., Binns, L.N. and Carey, H. (2014) Levomilnacipran. Annals of Pharmacotherapy, 48, 1030-1039.
http://dx.doi.org/10.1177/1060028014535074 [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
张方喜, 张雪梅, 蒋王林, 等. 三重再摄取抑制类抗抑郁药的研究进展和盐酸安舒法辛的发现[J]. 中国新药杂志, 2014, 23(16): 1918-1923.
|
|
[4]
|
Scorza, M.C., Lladó-Pelfort, L., et al. (2011) Preclinical and Clinical Characterization of the Selective Serotonin-1A Receptor Antagonist DU-125530 for Antide-pressant Treatment. British Journal of Pharmacology, 167, 1021-1034.
http://dx.doi.org/10.1111/j.1476-5381.2011.01770.x [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Arif, K., Cutler, A.J., Kajdasz, D.K., et al. (2011) A Ran-domized, Double-Blind, Placebo-Controlled, 8-Week Study of Vilazodone, a Serotonergic Agent for the Treatment of Major Depressive Disorder. Journal of Clinical Psychiatry, 72, 441-447. http://dx.doi.org/10.4088/JCP.10m06596 [Google Scholar] [CrossRef]
|
|
[6]
|
Papakostas, G.I. and Fava, M. (2007) A Meta-Analysis of Clinical Trials Comparing the Serotonin (5HT)-2 Receptor Antagonists Trazodone and Nefazodone with Selective Serotonin Reuptake In-hibitors for the Treatment of Major Depressive Disorder. European Psychiatry: The Journal of the Association of European Psychiatrists, 22, 444-447.
http://dx.doi.org/10.1016/j.eurpsy.2007.01.1220 [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Tardito, D., Molteni, R., Popoli, M., et al. (2012) Synergistic Mechanisms Involved in the Antidepressant Effects of Agomelatine. European Neuropsychopharmacology: The Journal of the European College of Neuropsychopharmacology, 22, S482-S486. http://dx.doi.org/10.1016/j.euroneuro.2012.06.016 [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Corruble, E., De Bodinat, C., Belaïdi, C., et al. (2013) Efficacy of Agomelatine and Escitalopram on Depression, Subjective Sleep and Emotional Experiences in Patients with Major Depressive Disorder: A 24-wk Randomized Controlled, Double-Blind Trial. International Journal of Neuropsychopharmacology, 16, 2219-2234.
http://dx.doi.org/10.1017/S1461145713000679 [Google Scholar] [CrossRef]
|
|
[9]
|
Citrome, L. (2016) Vortioxetine for Major Depressive Disorder: An Indirect Comparison with Duloxetine, Escitalopram, Levomilnacipran, Sertraline, Venlafaxine, and Vilazodone, Using Number Needed to Treat, Number Needed to Harm, and Likelihood to Be Helped or Harmed. Journal of Affective Disorders, 196, 225-233.
http://dx.doi.org/10.1016/j.jad.2016.02.042 [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Sanchez, C., Asin, K.E. and Artigas, F. (2014) Vortioxetine, a Novel Antidepressant with Multimodal Activity: Review of Preclinical and Clinical Data. Pharmacology & Therapeutics, 145, 43-57.
http://dx.doi.org/10.1016/j.pharmthera.2014.07.001 [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Bétry, C., Overstreet, D., Haddjeri, N., et al. (2015) A 5-HT 3, Receptor Antagonist Potentiates the Behavioral, Neurochemical and Electrophysiological Actions of an SSRI Antidepressant. Pharmacology Biochemistry & Behavior, 131, 136-142. http://dx.doi.org/10.1016/j.pbb.2015.02.011 [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Gupta, D., Radhakrishnan, M., Thangaraj, D., et al. (2014) Antidepressant and Anti-Anxiety Like Effects of 4i (N-(3- Chlo-ro-2-Methylphenyl) Quinoxalin-2-Carboxamide), a Novel 5-HT 3, Receptor Antagonist in Acute and Chronic Neurobehavioral Rodent Models. European Journal of Pharmacology, 735, 59-67.
http://dx.doi.org/10.1016/j.ejphar.2014.04.008 [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Baldev Kumar, G., Ankur, J., Arghya Kusum, D., et al. (2013) An-tidepressant—Like Activity of 2-(4-Phenylpiperazin- 1-yl)-1, 8-Naphthyridine-3-Carboxylic Acid (7a), a 5-HT3 Receptor Antagonist in Behaviour Based Rodent Models: Evidence for the Involvement of Serotonergic System. Pharmacology Bio-chemistry & Behavior, 109, 91-97.
http://dx.doi.org/10.1016/j.pbb.2013.05.006 [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Nikiforuk, A. (2015) Targeting the Serotonin 5-HT7 Receptor in the Search for Treatments for CNS Disorders: Rationale and Progress to Date. CNS Drugs, 29, 1-11. http://dx.doi.org/10.1007/s40263-015-0236-0 [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Westrich, L., Haddjeri, N., Dkhissi-Benyahya, O., et al. (2015) In-volvement of 5-HT 7, Receptors in Vortioxetine’s Modulation of Circadian Rhythms and Episodic Memory in Rodents. Neuropharmacology, 89, 382-390.
http://dx.doi.org/10.1016/j.neuropharm.2014.10.015 [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Kenji, M., Haruhiko, S., Hitomi, A., et al. (2014) Brexpiprazole I: In Vitro and in Vivo Characterization of a Novel Serotonin-Dopamine Activity Modulator. The Journal of Pharmacology & Experimental Therapeutics, 350, 589-604.
http://dx.doi.org/10.1124/jpet.114.213793 [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Oosterhof, C.A., Mostafa, E.M. and Pierre, B. (2014) Acute Effects of Brexpiprazole on Serotonin, Dopamine, and Norepinephrine Systems: An in Vivo Electrophysiologic Characterization. The Journal of Pharmacology & Experimental Therapeutics, 351, 585-595. http://dx.doi.org/10.1124/jpet.114.218578 [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Thase, M.E., Youakim, J.M., Skuban, A., et al. (2015) Efficacy and Safety of Adjunctive Brexpiprazole 2 mg in Major Depressive Disorder: A Phase 3, Randomized, Placebo-Controlled Study in Patients with Inadequate Response to Antidepressants. Journal of Clinical Psychiatry, 76, 1224-1231.
|
|
[19]
|
Noriko, Y., Takashi, F. and Kenji, H. (2015) Improvement of Dizocilpine-Induced Social Recognition Deficits in Mice by Brexpiprazole, a Novel Serotonin-Dopamine Activity Modulator. European Neuropsychopharmacology, 25, 356- 364. http://dx.doi.org/10.1016/j.euroneuro.2014.12.014 [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
De Boer, T. (1996) The Pharmacologic Profile of Mirtazapine. Journal of Clinical Psychiatry, 57, 19-25.
|
|
[21]
|
Dahal, S., Ojha, S.I., Chapagain, M. and Tulachan, P. (2014) Efficacy and Tolerability of Mirtazapine versus Sertraline: An Open, Randomized Study in Acute Treatment in Patients with Major De-pressive Disorder. Journal of Psychiatrists’ Association of Nepal, 3, 29-34. http://dx.doi.org/10.3126/jpan.v3i1.11349 [Google Scholar] [CrossRef]
|
|
[22]
|
Machado-Vieira, R., Salvadore, G., Ibrahim, L.A., Diaz-Granados, N. and Zarate Jr., C.A. (2009) Targeting Glutamatergic Signaling for the Development of Novel Therapeutics for Mood Disorders. Current Pharmaceutical Design, 15, 1595-1611.
|
|
[23]
|
Chaki, S., Ago, Y., Palucha-Paniewiera, A., Matrisciano, F. and Pilc, A. (2012) mGlu2/3 and mGlu5 Receptors: Potential Targets for Novel Antidepressants. Neuropharmacology, 66, 40-52.
|
|
[24]
|
Niciu, M.J., Ionescu, D.F., Richards, E.M. and Zarate Jr., C.A. (2014) Glutamate and Its Receptors in the Path-ophysiology and Treatment of Major Depressive Disorder. Journal of Neural Transmission, 121, 907-924.
http://dx.doi.org/10.1007/s00702-013-1130-x [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Miller, O.H., Moran, J.T. and Hall, B.J. (2016) Two Cellular Hy-potheses Explaining the Initiation of Ketamine’s Antidepressant Actions: Direct Inhibition and Disinhibition. Neurophar-macology, 100, 17-26.
http://dx.doi.org/10.1016/j.neuropharm.2015.07.028 [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Li, N., Lee, B., Liu, R.J., et al. (2010) mTOR-Dependent Synapse Formation Underlies the Rapid Antidepressant Effects of NMDA Antagonists. Science, 329, 959-964. http://dx.doi.org/10.1126/science.1190287 [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Li, N., Liu, R.J., Dwyer, J.M., et al. (2011) Glutamate N-Methyl-D-Aspartate Receptor Antagonists Rapidly Reverse Behavioral and Synaptic Deficits Caused by Chronic Stress Exposure. Biological Psychiatry, 69, 754-761.
http://dx.doi.org/10.1016/j.biopsych.2010.12.015 [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Regan, M.C., Romero-Hernandez, A. and Furukawa, H. (2015) A Structural Biology Perspective on NMDA Receptor Pharmacology and Function. Current Opinion in Structural Biology, 33, 68-75.
http://dx.doi.org/10.1016/j.sbi.2015.07.012 [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Peng, W.F., Ding, J., Li, X., Fan, F., Zhang, Q.-Q. and Wang, X. (2015) N-Methyl-D-Aspartate Receptor NR2B Subunit Involved in Depression-Like Behaviours in Lithium Chloride-Pilocarpine Chronic Rat Epilepsy Model. Epilepsy Research, 119, 77-85. http://dx.doi.org/10.1016/j.eplepsyres.2015.09.013 [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Lobna, I., Nancy, D.G., Libby, J., et al. (2012) A Randomized, Placebo-Controlled, Crossover Pilot Trial of the Oral Selective NR2B Antagonist MK-0657 in Patients with Treat-ment-Resistant Major Depressive Disorder. Journal of Clinical Psychopharmacology, 32, 551-557. http://dx.doi.org/10.1097/JCP.0b013e31825d70d6 [Google Scholar] [CrossRef]
|
|
[31]
|
Zanos, P., Piantadosi, S.C., Wu, H.Q., et al. (2015) The Prodrug 4-Chlorokynurenine Causes Ketamine-Like Antidepressant Effects, but Not Side Effects, by NMDA/GlycineB-Site Inhibition. The Journal of Pharmacology & Experimental Therapeutics, 355, 76-85. http://dx.doi.org/10.1124/jpet.115.225664 [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Jing, D., Machado-Vieira, R., Maeng, S., Martinowich, K., Manji, H.K. and Zarate Jr., C.A. (2006) Enhancing AMPA to NMDA Throughput as a Convergent Mechanism for Antidepressant Action. Drug Discovery Today: Therapeutic Strategies, 3, 519-526. http://dx.doi.org/10.1016/j.ddstr.2006.11.012 [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Duman, R.S., Li, N., Liu, R.J., Duric, V. and Aghajanian, G. (2011) Signaling Pathways Underlying the Rapid Antidepressant Actions of Ketamine. Neuropharmacology, 62, 35-41. http://dx.doi.org/10.1016/j.neuropharm.2011.08.044 [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
O’Neill, M.J., David, B., Zimmerman, D.M. and Nisenbaum, E.S. (2004) AMPA Receptor Potentiators for the Treatment of CNS Disorders. Current Drug Target-CNS & Neurological Disorders, 3, 181-194.
http://dx.doi.org/10.2174/1568007043337508 [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Nicoletti, F., Bruno, V., Ngomba, R.T., Gradini, R. and Battaglia, G. (2014) Metabotropic Glutamate Receptors as Drug Targets: What’s New? Current Opinion in Pharmacology, 20, 89-94.
|
|
[36]
|
Pałucha-Poniewiera, A., Wierońska, J.M., Brański, P., Burnat, G., Chruścicka, B. and Pilc, A. (2013) Is the mGlu5 Receptor a Possible Target for New Antidepressant Drugs? Pharmacological Reports, 65, 1506-1511.
http://dx.doi.org/10.1016/S1734-1140(13)71511-1 [Google Scholar] [CrossRef]
|
|
[37]
|
Lothar, L., Porter, R.H., Scharf, S.H., et al. (2015) Pharmacol-ogy of Basimglurant (RO4917523, RG7090), a Unique Metabotropic Glutamate Receptor 5 Negative Allosteric Modulator in Clinical Development for Depression. The Journal of Pharmacology & Experimental Therapeutics, 353, 213-233.
|
|
[38]
|
Salardini, E., Zeinoddini, A., Mohammadinejad, P., et al. (2016) Riluzole Combination Therapy for Moder-ate-to-Se- vere Major Depressive Disorder: A Randomized, Double-Blind, Placebo-Controlled Trial. Journal of Psychiatric Re-search, 75, 24-30.
|