水平井随钻伽马测井快速反演储层界面
Fast Inversion of Reservoir Boundary Using Gamma-Ray Logging-While-Drilling in Horizontal Well
DOI: 10.12677/JOGT.2017.392016, PDF, HTML, XML, 下载: 1,339  浏览: 3,707 
作者: 刘 勇:中国石油集团测井有限公司,甘肃 庆阳
关键词: 随钻伽马测井水平井快速反演储层界面正演算法LWD Gamma-Ray Logging Horizontal Well Fast Inversion Reservoir Boundary Forward Algorithm
摘要: 随钻伽马测井地质导向是提高水平井储层有效钻遇率的重要方法,但目前研究随钻伽马测井的方法计算速度有限。为实现实时地质导向,基于水平井地层中随钻伽马测井探测范围的空间特征,确立了随钻自然伽马测井的正演方法;利用该正演方法,建立了在不同地层中离边界不同距离情况下的随钻自然伽马测井响应图版;再利用该图版,建立普遍适用的随钻伽马测井快速反演储层界面的方法。在双层介质模型和随钻实例地层中,可以快速、准确地反演出地层界面的位置,表明该方法可用于随钻伽马测井的实时地质导向工作。
Abstract: Geosteering by using Gamma-ray logging-while-drilling was an important method to improve the effective drilling rate of reservoir in horizontal wells, but the calculation speed of the method for studying the gamma-ray logging was limited. In order to realize real-time geosteering, based on the detection spatial characteristics of LWD gamma-ray logging tool in horizontal wells, the forward method of LWD gamma-ray logging was established. Using the forward method, the logging responses chart of LWD gamma-ray logging with different distance to boundary in different strata was established. Finally, the fast inversion method of reservoir boundary of LWD gamma-ray logging in common use was established. In the double layer medium model and LWD strata example, the inversion method can be used to obtain the boundary position quickly and accurately. This indicates that the method can be applied to the real-time geosteering of LWD gamma-ray logging.
文章引用:刘勇. 水平井随钻伽马测井快速反演储层界面[J]. 石油天然气学报, 2017, 39(2): 44-50. https://doi.org/10.12677/JOGT.2017.392016

参考文献

[1] Meador, R.A. (2009) Logging-While-Drilling A Story of Dreams, Accomplishments, and Bright Futures. SPWLA 50th Annual Logging Symposium, the Woodlands, Texas, United States, SPWLA 2009-C.
[2] Meehan, D.N. (1994) Geological Steering of Horizontal Wells. Journal of Petroleum Technology, 46, 848-852.
https://doi.org/10.2118/29242-PA
[3] 苏义脑. 地质导向钻井技术概况及其在我国的研究进展[J]. 石油勘探与开发, 2005, 32(1): 92-95.
[4] Glant, C.A. (2005) Reservoir Management Employing Smart Wells: A Review. SPE Drilling & Completion, 20, 281- 288.
https://doi.org/10.2118/81107-PA
[5] 邵才瑞, 曹先军, 陈国兴, 等. 随钻伽马测井快速正演算法及地质导向应用[J]. 地球物理学报, 2013, 56(11): 3932-3942.
[6] Yin, H.Z., Zhou, J.J. and Guo, P.J. (2008) A Hybrid Solution for Fast 3D Gamma Ray Tool Modeling in High Angle and Horizontal Wells. SPWLA 49th Annual Logging Symposium, Edinburgh, Scotland, SPWLA 2008-YYY.
[7] Qin, Z., Pan, H., Wang, Z.H., et al. (2017) A Fast Forward Algorithm for Real-Time Geosteering of Azimuthal Gamma-Ray Logging. Applied Radiation and Isotopes, 123C, 114-120.
https://doi.org/10.1016/j.apradiso.2017.02.042
[8] Chen, Y., Lorentzen, R.J. and Vefring, E.H. (2015) Optimization of Well Trajectory under Uncertainty for Proactive Geosteering. SPE Journal, 20, 1-16.
https://doi.org/10.2118/172497-pa
[9] 吴文圣, 付赓, 张智, 等. 小井径双源距碳氧比C/O测井的影响因素及处理[J]. 地球物理学报, 2005, 48(2): 459- 464.
[10] 黄隆基. 放射性测井原理[M]. 北京: 石油工业出版社, 1985: 22-50.
[11] 杨锦舟. 基于随钻自然伽马、电阻率的地质导向系统及应用[J]. 测井技术, 2005, 29(4): 285-288.
[12] 章晔. 放射性方法勘查[M]. 北京: 原子能出版社, 1990: 128-130.
[13] 赵占良, 白建文, 胡子见, 等. 苏里格气田薄产层水平井地质导向技术研究[J]. 钻采工艺, 2010, 33(4): 10-12.