In掺杂对PbTe薄膜结构及电输运特性影响
The Influence of In Doping on the Structure and Electric Transport Characteristics of PbTe Thin Films
DOI: 10.12677/MP.2017.76029, PDF, HTML, XML, 下载: 1,466  浏览: 3,585  国家自然科学基金支持
作者: 徐珊瑚, 郑春波, 蒋 磊, 陈忠兰, 周 丹, 朱 希, 吴海飞*:绍兴文理学院物理系,浙江 绍兴;斯剑霄:浙江师范大学数理与信息工程学院,浙江 金华;廖 清:贺州学院材料与环境工程学院,广西 贺州
关键词: 热电材料Pb1-xInxTe分子束外延Thermoelectric Material Pb1-xInxTe Molecular Beam Epitaxy
摘要: 本文采用分子束外延(MBE)方法在BaF2(111)衬底上外延生长了Pb1−xInxTe (0.00 ≤ x ≤ 0.20)薄膜。研究结果表明当x ≤ 0.06时,In在PbTe中进行替位式掺杂,形成n型的立方相Pb1−xInxTe结构,薄膜电导率随In掺杂量的增加而增大;当x ≥ 0.10时,In掺杂出现过饱和,过量的In形成In2Te3结构相,Pb1−xInxTe薄膜电导率急剧下降。整个掺杂过程中,In均向薄膜表面发生了偏析。综合分析不同In掺杂量下Pb1−xInxTe薄膜的Seebeck系数和电导率测试结果,可以得出In的微量掺杂可实现PbTe薄膜电输运性能的提升,In掺杂量为0.06时薄膜表现出最佳的电输运性能,440K时Pb1−xInxTe (x = 0.06)的功率因子可达9.7 μW∙cm−1∙K−2,为本征PbTe最大功率因子的1.2倍。
Abstract: In this paper, Pb1−xInxTe (0.00 ≤ x ≤ 0.20) thin films were epitaxially grown on BaF2 (111) substrate using molecular beam epitaxy (MBE). The results show that when x ≤ 0.06, In atoms act as substitutional doping in PbTe, forming n type cubic Pb1−xInxTe structure, and their conductivity increase with In doping increasing; When x ≥ 0.10, In atoms are oversaturated in PbTe and In2Te3 phase were formed , resulting in the sharply decrease of the film conductivity. In atoms segregate to film surface among the entire doping process. Comprehensive analysis of the Seebeck coefficient and conductivity test results of different In doping Pb1-xInxTe films, we can obtain that electrical transport properties of PbTe can be improved by trace In doping, and Pb1-xInxTe (x = 0.06) thin film is the optimum, its power factor at 440K can be up to 9.7 μW∙cm−1∙K−2 at 400 K, which is 1.2 times greater than that of PbTe.
文章引用:徐珊瑚, 郑春波, 蒋磊, 陈忠兰, 周丹, 朱希, 斯剑霄, 廖清, 吴海飞. In掺杂对PbTe薄膜结构及电输运特性影响[J]. 现代物理, 2017, 7(6): 249-256. https://doi.org/10.12677/MP.2017.76029

参考文献

[1] Lalonde, A.D., Pei, Y., Wang, H., et al. (2011) Lead Telluride Alloy Thermoelectrics. Materials Today, 14, 526-532.
https://doi.org/10.1016/S1369-7021(11)70278-4
[2] Bell, L.E. (2008) Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems. Science, 321, 1457.
https://doi.org/10.1126/science.1158899
[3] Zhao, L.D., Tan, G.J., Hao, S.Q., et al. (2016) Ultrahigh Power Factor and Thermoelectric Performance in Hole-Doped Single-Crystal SnSe. Science, 351, 141.
https://doi.org/10.1126/science.aad3749
[4] Nielsen, M.D., Levin, E.M., Jaworski, C.M., et al. (2012) Chromium as Resonant Donor Impurity in PbTe. Physical Review B Condensed Matter, 85, 435-441.
https://doi.org/10.1103/PhysRevB.85.045210
[5] Jaworski, C.M. and Heremans, J.P. (2012) Thermoelectric, Thermoelectric Transport Properties of the N-Type Impurity Al in PbTe. Physical Review B, 85, 317-322.
https://doi.org/10.1103/PhysRevB.85.033204
[6] Pei, Y.Z., Lalonde, A.D., Heinz, N.A., et al. (2011) Stabilizing the Optimal Carrier Concentration for High Thermoelectric Efficiency. Advanced Materials, 23, 5674-5678.
https://doi.org/10.1002/adma.201103153
[7] Jeffrey, S.G. and Tobrer, E.S. (2008) Complex Thermoelectric Materials. Nature Materials, 7, 105-114.
https://doi.org/10.1038/nmat2090
[8] Das, V.D. and Bhat, K.S. (1983) Anomalous Temperature Dependence of Thermoelectric Power of PbTe Thin Films. Journal of Applied Physics, 54, 6641-6645.
https://doi.org/10.1063/1.331849
[9] Alidzhanov, M.A., Agdamskaya, S.G. and Abilov, C.I. (1991) Thermoelectric Properties of (Pbte) 1-X (Nite2) X Solid Solutions. Inorganic Materials, 27, 2088.
[10] Jaworski, C.M. and Heremans, J.P. (2012) Thermoelectric Transport Properties of the N-Type Impurity Al in PbTe. Physical Review B, 85, Article ID: 033204.
https://doi.org/10.1103/PhysRevB.85.033204
[11] Nielsen, M.D., Levin, E.M., Jaworski, C.M. and Heremans, J.P. (2012) Chromium as Resonant Donor Impurity in PbTe. Physical Review B, 85, Article ID: 045210.
https://doi.org/10.1103/PhysRevB.85.045210
[12] Heremans, J.P., Jovovic, V., Toberer, E., et al. (2008) Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States, Science, 321, 554.
https://doi.org/10.1126/science.1159725
[13] Wang, S.Y., Zheng, G., Luo, T.T., et al. (2011) Exploring the Doping Effects of Ag in P-type PbSe Compounds with Enhanced Thermoelectric Performance. Journal of Physics D-Applied Physics, 44, Article ID: 475304.
https://doi.org/10.1088/0022-3727/44/47/475304
[14] 吴海飞, 陈耀, 徐珊瑚, 等. PbTe(111)薄膜的分子束外延生长及其表面结构特性[J]. 物理化学学报, 2017, 33(2): 419.
[15] Yashina, L.V., Tikhonov, E.V., Neudachina, V.S., et al. (2004) The Oxida-tion of PbTe(100) Surface in Dry Oxygen. Surface and Interface Analysis, 36, 993.
https://doi.org/10.1002/sia.1820
[16] Morgan, W.E. and Van Wazer, J.R. (1973) Binding Energy Shifts in the X-Ray Photoelectron Spectra of a Series of Related Group IVa Compounds. Journal of Physical Chemistry, 77, 964-969.
https://doi.org/10.1021/j100626a023
[17] Kim, K.S., O’leary, T.J. and Winograd, N. (1973) X-Ray Photoelectron Spectra of Lead Oxides. Analytical Chemistry, 45, 1884.
https://doi.org/10.1021/ac60335a009
[18] 吴海飞, 吴珂, 张寒洁, 等. 窄带隙IV-VI族半导体PbTe(111)的表面氧化及氧的热脱附机理[J]. 物理化学学报, 2012, 28(5): 1252-1256.
[19] Bassani, F., Tatarenko, S., Saminadayar, K., et al. (1992) Indium Doping of CdTe and Cd1−xZnxTe by Molecular-Beam Epitaxy: Uniformly and Planar-Doped Layers, Quantum Wells, and Superlattices. Journal of Applied Physics, 72, 2927-2940.
https://doi.org/10.1063/1.351496
[20] Springholz, G., Bauer, G. and Ihninger, G. (1993) MBE of High Mobility PbTe Films and PbTe/Pb1-xEuxTe Heterostructures. Journal of Crystal Growth, 127, 302-307.
https://doi.org/10.1016/0022-0248(93)90626-8