#### 期刊菜单

Research and Application of Effective Distance of Transient Electromagnetic Forward Detection in Excavation Roadway
DOI: 10.12677/AG.2018.81011, PDF, HTML, XML, 下载: 1,382  浏览: 5,960

Abstract: In this paper, the transient electromagnetic advanced detection of tunneling working roadway is studied, which is a function of the rock resistivity, electromagnetic wave propagation time and transmission line frame size in the vertical direction. In mine normal geological conditions, tran-sient electromagnetic field is a symmetric field in front of the heading face in geological structure, under the condition of full space transient electromagnetic field is the symmetry of the transient electromagnetic field of a symmetric destruction, which is a symbol of heading face water. The transient electromagnetic field near field high speed, advanced speed is low, heading off the blind spot detection is generally 13 m, SNR related transient electromagnetic detection distance and in-strument system, the instrument system signal-to-noise ratio is larger than 2, which can effectively detect the abnormal flood 100 m ahead of excavation face.

1. 引言

2. 瞬变电磁波的传播速度与旅行时的关系

$D\left(t\right)={\int }_{0}^{t}{V}_{d}\left(\rho ,{t}^{\prime }\right)\text{d}{t}^{\prime },$ (1)

${V}_{d}=\text{d}D/\text{d}t.$ (2)

${C}_{1}\left(\gamma \right)={e}^{\gamma }\underset{k=0}{\overset{\infty }{\sum }}\frac{\Gamma \left(k+5/2\right)}{k!\left(k+1\right)!}{\left(-\gamma \right)}^{k}$ (3)

$D=\frac{a}{2{\gamma }^{1/2}}\left\{{C}_{1}\left(\gamma \right)+{\left[{C}_{1}^{2}\left(\gamma \right)+2\right]}^{1/2}\right\},$ (4)

${V}_{d}=\frac{\partial D}{\partial t}=\frac{\sqrt{\gamma }}{\sigma \mu a}\left[{C}_{1}+{\left({C}_{1}^{2}+2\right)}^{1/2}+\left(1+\frac{{C}_{1}}{{\left({C}_{1}^{2}+2\right)}^{1/2}}\right)\gamma {C}_{2}\right],$ (5)

3. 关断时间观测与掘进工作面前方盲区

${t}_{of}=\frac{L}{R}\mathrm{ln}\frac{2V}{v+1.5}$

L为发送回线电感；R为回线的电阻；V为加于回线的电压。

Figure 1. Transient electromagnetic wave propagation velocity and travel time diagram

Figure 2. Inversion result map of blind area in inversion of actual data

4. 瞬变电磁有效探测距离

4.1. 掘进工作面瞬变电磁场的特征

Figure 3. Transient electromagnetic simulation snapshot of different wire frame sizes; The device of 3 m × 3 m; Below is the 1 m × 1 m

4.2. 瞬变电磁波的探测距离

4.3. 煤矿井下超前水害探测实例

Figure 4. Relation diagram of detecting distance of transient electromagnetic field and device size and signal to noise ratio of minimum signal

Figure 5. The results of underground integrated geophysical exploration and exploration. Fan sector is the result of underground transient electromagnetic detection, the middle rectangular column is DC electrical detection results, the blue area is low resistivity, and yellow is high resistivity

5. 结论

 [1] 刘树才, 岳建华, 刘志新. 煤矿水文物探技术与应用[M]. 徐州: 中国矿业大学出版社, 2005. [2] 韩德馨, 彭苏萍. 我国煤矿高产高效矿井地质保障系统研究回顾及发展构想[J]. 中国煤炭, 2002, 28(2): 5-10. [3] 程增庆, 王肖颖, 廖萌, 等. 三维地震横向分辨率的研究[J]. 石油地球物理勘探增刊, 1996, 31(1): 778-781. [4] 祁民, 张宝林. 高分辨率预测地下复杂采空区的空间分布特征–高密度电法在山西阳泉某复杂采空区中的初步应用研究[J]. 地球物理学进展, 2005, 3(21): 304-306. [5] 余东俊. 瞬变电磁法在隧道超前预报中的应用和效果研究[D]: [硕士学位论文]. 成都: 成都理工大学, 2010. [6] 闫述, 石显新, 陈明生. 瞬变电磁的探测深度问题.地球物理学报[J]. 2009, 52(6): 1583-1591. [7] 薛国强, 邓湘. 瞬变电磁法对薄层的探测能力[J]. 石油地球物理勘探, 2007, 42(6): 709-713. [8] Shuck, E.L., Davis, T.L. and Benson, R.D. (1996) Multicomponent 3-D Characterization of a Coalbed Methane Reservoir. Geophysics, 61, 315-330. https://doi.org/10.1190/1.1443961 [9] 曲寿利. 全方位P波属性裂缝检测方法[J]. 石油地球物理勘探, 2001, 36(4): 390-397. [10] 段铮. 瞬变电磁法在隧道超前地质预报中的应用及解译分析[D]: [硕士学位论文]. 成都理工大学, 2008. [11] 彭苏萍, 凌标灿. 综采放顶煤工作面地震CT探测技术应用[J]. 岩石力学与工程学报, 2002, 18(3): 472-476. [12] 郑怀昌, 李明. 地下采空区危险性及其分析[J]. 矿山严厉与顶班管理, 2005, 22(4): 127-129. [13] 卫桂玲. 中美矿难比较分析及警示[J]. 当代经济, 2009(1): 50-52. [14] 梁爽, 李志民. 瞬变电磁法在阳泉二矿探测积水采空区的效果分析[J]. 煤田地质与勘探, 2003, 31(4): 49-51. [15] 刘青华, 王祝文. 煤矿采空区及塌陷区的地球物理探查[J]. 煤炭学报, 2005, 34(1): 67-70. [16] 于生宝, 王忠, 嵇艳鞠, 林君. 瞬变电磁法浅层探测技术[J]. 电波科学学报, 2006, 21(2): 284-287.