期刊菜单

Overlap Grid Research on the Application of Minitype Oil Viscous Damper Design
DOI: 10.12677/IJFD.2018.61002, PDF, HTML, XML, 下载: 1,428  浏览: 3,299  科研立项经费支持

Abstract: Unsteady Reynolds Averaged Navier Stokes (URANS) methods and moving overlap gird tech-nique are used to calculate the internal flow around thin plate vibrating in vessel filled with vis-cous fluid. Computational grid zones are arranged overlapping each other. The gird moving is carried out by using user define function built in commercial software. The SST k-ω turbulence model, finite volume method and PISO algorithm are employed to solve URANS equations in viscous flow calculation. This paper builds numerical model for a minitype oil viscous damper with hexagon thin plat and solves the internal flow. The results show that the energy dissipation capacity of this damper is not only in linear relationship with the area of the plate but also pro-portional to the square of the vibration amplitude. The flow visualization of the pressure evolu-tion on surface of the oscillating thin plate during a period contributes to insight of flow prob-lem in this kind. Those results also manifest that the present CFD simulation with overlap gird is suitable for calculating the oscillating flow induced by thin plate in closed container filled with viscous fluid.

1. 引言

2. 小型油粘滞阻尼器模型

3. CFD数值计算模型

3.1. URANS控制方程

$\frac{\partial {\stackrel{¯}{U}}_{i}}{\partial t}+\frac{\partial }{\partial {x}_{j}}\left({\stackrel{¯}{U}}_{i}{\stackrel{¯}{U}}_{j}\right)=-\frac{1}{\rho }\frac{\partial \stackrel{¯}{P}}{\partial {x}_{i}}+v\frac{{\partial }^{2}{\stackrel{¯}{U}}_{i}}{\partial {x}_{i}\partial {x}_{j}}-\frac{\partial {\stackrel{¯}{{{u}^{″}}_{i}{u}^{″}}}_{j}}{\partial {x}_{j}}$ (1)

$\frac{\partial {\stackrel{¯}{U}}_{i}}{\partial {x}_{i}}=0$ (2)

Figure 1. Vertical view of minitype oil viscous damper

${\stackrel{¯}{U}}_{i}={\stackrel{¯}{U}}_{i}\left(x,y,z,t\right)$ (3)

$\stackrel{¯}{P}=\stackrel{¯}{P}\left(x,y,z,t\right)$ (4)

$\stackrel{¯}{{{u}^{″}}_{i}{{u}^{″}}_{j}}=\stackrel{¯}{{{u}^{″}}_{i}{{u}^{″}}_{j}}\left(x,y,z,t\right)$ (5)

3.2. SST k-ω湍流模型

SST k-ω湍流模型即剪切压力传输k-ω模型，是标准k-ω模型的升级版，由Menter提出 [10] ，其流动控制方程如下

$\frac{\partial }{\partial t}\left(\rho k\right)+\frac{\partial }{\partial {x}_{i}}\left(\rho k{u}_{i}\right)=\frac{\partial }{\partial {x}_{j}}\left({\Gamma }_{k}\frac{\partial k}{\partial {x}_{j}}\right)+{G}_{k}-{Y}_{k}+{S}_{k}$ (6)

$\frac{\partial }{\partial t}\left(\rho \omega \right)+\frac{\partial }{\partial {x}_{i}}\left(\rho \omega {u}_{i}\right)=\frac{\partial }{\partial {x}_{j}}\left({\Gamma }_{k}\frac{\partial \omega }{\partial {x}_{j}}\right)+{G}_{\omega }-{Y}_{\omega }+{D}_{\omega }+{S}_{\omega }$ (7)

3.3. 边界条件与网格生成

Figure 2. Boundary condition of computational domain and the surface grid of thin plate

4. 结果分析与讨论

4.1. 阻力时程与滞回曲线

Figure 3. Slice of the overlap grid

(a) (b)

Figure 4. Time history of displacement and drag force

Figure 5. Displacement-drag hysteretic curves of the vibrating thin plate with different area when the amplitude is 0.02 m

4.2. 薄板表面压强演化

Figure 6. Damping dissipation energy in a period of the vibrating thin plate when the amplitude is 0.02 m

Figure 7. Schematic diagram of the specified moment during a period

Figure 8. Evolution of the pressure acting on upper surface of the thin plate during a period displayed by filled contour line

4.3. 薄板振幅的影响

Figure 9. Displacement-drag hysteretic curves of the vibrating thin plate with different amplitude when the area is 0.01 m2

Figure 10. Function fitting between the damping dissipation energy and the vibration amplitude of thin plate

5. 结论

 [1] 刘立平, 李英民, 韩军, 等. 调液阻尼器减振效应研究的综述和展望[J]. 土木建筑与环境工程, 2006, 28(4): 132-137. [2] 王福军. 计算流体动力学分析[M]. 北京: 清华大学出版社, 2004. [3] 张来平, 邓小刚, 张涵信. 动网格生成技术及非定常计算方法进展综述[J]. 力学进展, 2010, 40(4): 424-447. [4] Benek, J.A., Buning, P. and Steger, J. (1985) A 3-D Chimera Grid Embedding Technique. AIAA Journal, 322-331. [5] Buning, P.G., Parks, S.J., Chan, W.M., et al. (1992) Application of the Chimera Overlapped Grid Scheme to Simulation of Space Shuttle Ascent Flows. The 4th International Symposium on Computa-tional Fluid Dynamics, Davis, California, 132-137. [6] 李亭鹤. 重叠网格自动生成方法研究[D]: [博士学位论文]. 北京: 北京航空航天大学, 2004. [7] 周璇, 李水乡, 孙树立, 等. 非结构网格变形方法研究进展[J]. 力学进展, 2011, 41(5): 547-561. [8] 赵发明, 高成君, 夏琼. 重叠网格在船舶CFD中的应用研究[J]. 船舶力学, 2011, 15(4): 332-341. [9] Versteeg, H.K. and Malalasekera, W. (1995) An Introduction to Computational Fluid Dynamics—The Finite Volume Method. Longman Group Ltd., London. [10] Menter, F.R. (1992) Performance of Popular Turbulence Model for Attached and Separated Adverse Pressure Gradient Flows. AIAA Journal, 30, 2066-2072. https://doi.org/10.2514/3.11180