|
[1]
|
Zhang, F., Zhou, Z. and Benton, M.J. (2008) A Primitive Confuciusornithid Bird from China and Its Implications for Early Avian Flight. Science in China Series D: Earth Sciences, 51, 625-639. [Google Scholar] [CrossRef]
|
|
[2]
|
张福成, 周忠和, 李东升, 等. 孔子鸟的研究现状[J]. 自然杂志, 2009, 31(1): 8-11.
|
|
[3]
|
Benton, M.J. (2015) Vertebrate Palaeontology. 4th Edition, Wiley Blackwell, Hoboken.
|
|
[4]
|
Zheng, X., Zhou, Z., Wang, X., et al. (2013) Hind Wings in Basal Birds and the Evolution of Leg Feathers. Science, 339, 1309-1312. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Hou, L., Zhou, Z., Martin, L.D., et al. (1995) A Beaked Bird from the Jurassic of China. Nature, 377, 616-618. [Google Scholar] [CrossRef]
|
|
[6]
|
Ji, Q., Chiappe, L.M. and Ji, S. (1999) A New Late Mesozoic Confuciusornithid Bird from China. Journal of Vertebrate Paleontology, 19, 1-7. [Google Scholar] [CrossRef]
|
|
[7]
|
张福成, 侯连海, 欧阳涟. 孔子鸟(Confuciusornis)骨骼微观组织结构初步研究[J]. 古脊椎动物学报, 1998, 36(2): 126-133.
|
|
[8]
|
De Ricqlès, A.J., Padian, K., Horner, J.R., et al. (2003) Osteohistology of Confuciusornis sanctus (Theropod: Aves). Journal of Vertebrate Paleontology, 23, 373-386. [Google Scholar] [CrossRef]
|
|
[9]
|
Chiappe, L.M., Marugán-Lobón, J., Ji, S., et al. (2008) Life History of a Basal Bird: Morphometrics of the Early Cretaceous Confuciusornis. Biology Letters, 4, 719-723. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Marugán-Lobón, J., Chiappe, L., Ji, S., et al. (2011) Quantitative Patterns of Morphological Variation in the Appendicular Skeleton of the Early Cretaceous bird Confuciusornis. Journal of Systematic Palaeontology, 9, 91-101. [Google Scholar] [CrossRef]
|
|
[11]
|
Peters, W.S. and Peters, D.S. (2009) Life History, Sexual Dimorphism and “Ornamental” Feathers in the Mesozoic Bird Confuciusornis sanctus. Biology Letters, 5, 817-820. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Peters, W.S. and Peters, D.S. (2010) Sexual Size Dimorphism Is the Most Consistent Explanation for the Body Size Spectrum of Confuciusornis sanctus. Biology Letters, 6, 531-532. [Google Scholar] [CrossRef]
|
|
[13]
|
Chinsamy, A., Gao, C., Marugánlobón, J., et al. (2013) Gender Identification of the Mesozoic Bird Confuciusornis sanctus. Nature Communications, 4, 1381. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Pan, Y., Zheng, W., Moyer, A.E., et al. (2016) Molecular Evidence of Keratin and Melanosomes in Feathers of the Early Cretaceous Bird Eoconfuciusornis. Proceedings of the National Academy of Sciences of the United States of America, 113, E7900. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Dalsätt, J., Zhou, Z., Zhang, F., et al. (2006) Food Remains in Confuciusornis sanctus Suggest a Fish Diet. Naturwissenschaften, 93, 444-446. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Zinoviev, A.V. (2009) An Attempt to Reconstruct the Lifestyle of Confuciusornithids (Aves, Confuciusornithiformes). Paleontological Journal, 43, 444-452. [Google Scholar] [CrossRef]
|
|
[17]
|
Elzanowski, A. (2002) Biology of Basal Birds and the Origin of Avian Flight. In: Proceedings of the 5th Symposium of the Society of Avian Paleontology and Evolution, Science Press, Beijing, 211-226.
|
|
[18]
|
Gatesy, S.M. and Baier, D.B. (2005) The Origin of the Avian Flight Stroke: A Kinematic and Kinetic Perspective. Paleobiology, 31, 382-399. [Google Scholar] [CrossRef]
|
|
[19]
|
Zheng, X., O’Connor, J., Wang, X., et al. (2017) Exceptional Preservation of Soft Tissue in a New Specimen of Eoconfuciusornis and Its Biological Implications. National Science Review, 4, 441-452. [Google Scholar] [CrossRef]
|
|
[20]
|
Zhou, Z. (2004) The Origin and Early Evolution of Birds: Discoveries, Disputes, and Perspectives from Fossil Evidence. Naturwissenschaften, 91, 455-471. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Gatesy, S.M. (1991) Hind Limb Scaling in Birds and Other Theropods: Implications for Terrestrial Locomotion. Journal of Morphology, 1, 83-96. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
张玉光, 刘迪, 李志恒, 等. 基于形态对比和统计分析的中生代鸟类栖息行为的识别和判断[J]. 地质论评, 2010, 56(6): 875-884.
|
|
[23]
|
Hedrick, B.P., Manning, P.L., Lynch, E.R., et al. (2015) The Geometry of Taking Flight: Limb Morphometrics in Mesozoic Theropods. Journal of Morphology, 276, 152-166. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Zhang, Z., Gao, C., Meng, Q., et al. (2009) Diversification in an Early Cretaceous Avian Genus: Evidence from a New Species of Confuciusornis from China. Journal of Ornithology, 150, 783-790. [Google Scholar] [CrossRef]
|
|
[25]
|
Zhou, Z. and Zhang, F. (2004) Mesozoic Birds of China: An Introduction and Review. Acta Zoologica Sinica, 50, 913-920.
|
|
[26]
|
Chiappe, L., Ji, S., Ji, Q., et al. (1999) Anatomy and Systematics of the Confuciusornithidae (Theropoda: Aves) from the Late Mesozoic of Northeastern China. American Museum of Natural History, 1-89.
|
|
[27]
|
Li, D., Sullivan, C., Zhou, Z., et al. (2010) Basal Birds from China: A Brief Review. Chinese Birds, 1, 83-96. [Google Scholar] [CrossRef]
|
|
[28]
|
Zhou, Z. (2006) Mesozoic Birds of China––A Synoptic Review. Vertebrata Palasiatica, 1, 1-14.
|
|
[29]
|
Xu, X., Zhou, Z., Wang, X., et al. (2003) Four-Winged Dinosaurs from China. Nature, 421, 335-340. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Alexander, D.E., Gong, E., Martin, L.D., et al. (2010) Model Tests of Gliding with Different Hindwing Configurations in the Four-Winged Dromaeosaurid Microraptorgui. Proceedings of the National Academy of Sciences of the United States of America, 107, 2972-2976. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Tobalske, B.W. (2007) Biomechanics of Bird Flight. Journal of Experimental Biology, 210, 3135-3146. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
郑晓廷. 鸟类起源[M]. 济南: 山东科学技术出版社, 2009.
|
|
[33]
|
Longrich, N.R., Vinther, J., Meng, Q., et al. (2012) Primitive Wing Feather Arrangement in Archaeopteryx lithographica and Anchiornishuxleyi. Current Biology Cb, 22, 2262. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Longrich, N. (2006) Structure and Function of Hind Limb Feathers in Archaeopteryx lithographica. Paleobiology, 32, 417-431. [Google Scholar] [CrossRef]
|
|
[35]
|
Chatterjee, S., Templin, R.J. and Campbell, K.E. (2007) The Aerodynamics of Argentavis, the World’s Largest Flying Bird from the Miocene of Argentina. Proceedings of the National Academy of Sciences of the United States of America, 104, 12398-12403. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Heers, A.M. and Dial, K.P. (2012) From Extant to Extinct: Locomotor Ontogeny and the Evolution of Avian Flight. Trends in Ecology & Evolution, 27, 296-305. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Carroll, S.B., Grenier, J.K. and Weatherbee, S.D. (2005) From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design. Blackwell Publishing.
|
|
[38]
|
Gilbert, S.F. and Epel, D. (2009) Ecological Developmental Biology: Integrating Epigenetics, Medicine, and Evolution. Sinauer Associates, Inc.
|
|
[39]
|
Erickson, G.M. (2005) Assessing Dinosaur Growth Patterns: A Microscopic Revolution. Trends in Ecology & Evolution, 20, 677-684. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
De Margerie, E., Sanchez, S. and Cubo, J.J. (2005) Torsional Resistance as a Principal Component of the Structural Design of Long Bones: Comparative Multivariate Evidence in Birds. Anatomical Record, 282, 49-66.
|
|
[41]
|
Habib, M.B. and Ruff, C.B. (2010) The Effects of Locomotion on the Structural Characteristics of Avian Limb Bones. Zoological Journal of the Linnean Society, 153, 601-624. [Google Scholar] [CrossRef]
|
|
[42]
|
Simons, E.L., Hieronymus, T.L. and O’Connor, P.M. (2011) Cross Sectional Geometry of the Forelimb Skeleton and Flight Mode in Pelecaniform Birds. Journal of Morphology, 272, 958-971. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Heers, A.M., Baier, D.B., Jackson, B.E., et al. (2011) Developing Skeletons in Motion: The Ontogeny of Skeletal Form and Function in a Precocial Ground Bird (Alectorischukar). Integrative and Comparative Biology, 51, e55.
|
|
[44]
|
Jackson, B.E. and Dial, K.P. (2011) Scaling of Mechanical Power Output during Burst Escape Flight in the Corvidae. Journal of Experimental Biology, 214, 452-461. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Bright, J.A., Marugánlobón, J., Cobb, S.N., et al. (2016) The Shapes of Bird Beaks Are Highly Controlled by Nondietary Factors. Proceedings of the National Academy of Sciences of the United States of America, 113, 5352-5357. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Heers, A.M., Baier, D.B., Jackson, B.E., et al. (2016) Flapping before Flight: High Resolution, Three-Dimensional Skeletal Kinematics of Wings and Legs during Avian Development. PLoS ONE, 11, e153446. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Evangelista, D., Cardona, G., Guenther-Gleason, E., et al. (2014) Aerodynamic Characteristics of a Feathered Dinosaur Measured Using Physical Models. Effects of Form on Static Stability and Control Effectiveness. PLoS ONE, 9, e85203. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Rayfield, E.J. (2007) Finite Element Analysis and Understanding the Biomechanics and Evolution of Living and Fossil Organisms. Annual Review of Earth & Planetary Sciences, 35, 541-576. [Google Scholar] [CrossRef]
|
|
[49]
|
Cunningham, J.A., Rahman, I.A., Lautenschlager, S., et al. (2014) A Virtual World of Paleontology. Trends in Ecology & Evolution, 29, 347-357. [Google Scholar] [CrossRef] [PubMed]
|