期刊菜单

A Note on the Differential Geometry Concepts in Quantum Evolutional Systems (I): Geometric-Phase Connection, Gauge Potentials, Metric and Curvature Tensor
DOI: 10.12677/MP.2019.96029, PDF, HTML, XML, 下载: 1,212  浏览: 2,463

Abstract: Quantum evolutional systems can be defined as systems/models of interacting Hamiltonian operators with certain evolutional parameters. Quantum evolutional systems carry global or topological characteristics, exhibiting some geometric effects and phenomena. Based on quantum mechanics and electromagnetic gauge theory, we study some topics of the applications of differential geometry concepts in such systems. The brief history of quantum evolutional systems and geometric effects are reviewed with emphasis on the geometric phase and gauge potential (affine connection). The properties of the unitary transformation (related to the Lewis-Riesenfeld invariant formalism) are compared with vielbein fields in a manifold of differential geometry, and it can be found that such a unitary transformation operator can be identified as a vielbein field in gauge group space. The methods of calculating the state functions and geometric phases of the quantum evolutional systems as well as the manifold metric of parameter space in the evolutional Hamiltonian systems will be addressed. As a pedagogical note, the content of this paper would find an application in understanding the topics relevant to classical electromagfnetism, quantum optics, constrained quantum system dynamics, various gauge field theories and interdisciplinary researches.

1. 引言

(dual mass)。我们把通常的具有质量的物质称为引力电性物质，质量就是引力电荷量，其引力场分布由爱因斯坦引力场方程决定。与此相对应,我们可以提出引力磁性物质和引力磁荷(对偶质量)的概念，并建立引力磁荷的引力场方程。从对引力场方程的弱场低速近似形式和对偶方程 ${\epsilon }_{\mu \lambda \rho \tau }{R}^{\lambda \rho \tau }{}_{\nu }={t}_{\mu \nu }$ 静态的球对称精确解的分析可以看出，引力磁荷的存在与引力场的度规 ${g}_{\mu \nu }$ 的畸点(非解析性)有关。引力磁荷(对偶质量)与引力电荷(质量)不同，它是时空的拓扑荷，因此引力磁荷的引力场方程和运动方程的弱场近似形式类似于电动力学中磁单极子的电磁场方程和磁单极子运动方程。与电动力学中的磁荷一样，引力磁荷在宇宙中倒底是否确实存在,其实难以回答。也许引力磁荷可能以点粒子形式存在，也有可能以一定体积(有限大小)的所谓拓扑性孤粒子(topological soliton) [7] [8] 形式存在(类似在非阿贝尔规范理论中’t Hooft-Polyakov拓扑磁荷孤粒子 [7] [8] )。

[11]。在Berry之前，很多人对这个相位不以为然，认为它不重要，可以略去 [11]。但Berry发现，这是一个非平庸的相位，它在循环(巡回)条件下，可以写为Aharonov-Bohm相位那种闭合环路积分形式 [9]。

$i〈\psi |\frac{\partial }{\partial l}|\psi 〉$ 的闭合路径积分之后，相位 $\gamma$ 被称呼为Berry相位(Berry相位是一种绝热循环几何相位 [9] [10]

[11]。所谓循环条件，是指哈密顿量算符经过一段时间演化后，最终可以复归为初始哈密顿量)。而

$\mathrm{exp}\left(-i\int E\text{d}t/\hslash \right)$ 中的 $\int E\text{d}t/\hslash$ 只是一个普通的动力学相位。

$\mathrm{exp}\left(i\alpha \right)$ 中的参量 $\alpha$ 是一个解析函数，根据Stokes定理， $\nabla \alpha$ 的闭合路径积分为零(即 ${\int }_{c}\text{d}l\cdot \nabla \alpha =0$ )，所以Berry相位 $\gamma =i{\int }_{c}〈\psi |\nabla |\psi 〉\cdot \text{d}l$ 具有规范不变性(只要有规范不变性，自然就有物理含义了，也即实验上

2. 演化系统理论研究方法

[9] [10] [11]，状态函数 $|\psi 〉$ 是瞬时定态Schrödinger方程 $\stackrel{^}{H}\left(t\right)|\psi 〉=E|\psi 〉$ 的瞬时本征态。但在这里要指出，“瞬时定态Schrödinger方程”和“瞬时本征态”这两个概念在本质上是错误的。它们是不应该存在的概念。实际上，一旦哈密顿量算符含时，瞬时定态Schrödinger方程 $\stackrel{^}{H}\left(t\right)|\psi 〉=E|\psi 〉$ 便不再严格成立，只有

$\stackrel{^}{H}\left(t\right)|\Psi 〉=i\hslash \frac{\partial }{\partial t}|\Psi 〉$，改求某个不变量 $\stackrel{^}{I}\left(t\right)$ 的本征值方程 $\stackrel{^}{I}\left(t\right)|\psi 〉=\sigma |\psi 〉$，而Schrödinger方程的解 $|\Psi 〉$

[24]。Lewis-Riesenfeld不变量 $\stackrel{^}{I}\left(t\right)$ 满足(或定义为)： $\frac{\partial \stackrel{^}{I}\left(t\right)}{\partial t}+\frac{1}{i\hslash }\left[\stackrel{^}{I},\stackrel{^}{H}\right]=0$ [24]。此方程右边为零，体现

$\stackrel{^}{H}\left(t\right)|\Psi 〉=i\hslash \frac{\partial }{\partial t}|\Psi 〉$ 的特解为 $|{\Psi }_{\sigma }\left(t\right)〉=\mathrm{exp}\left(\frac{1}{i}{\Phi }_{\sigma }\right)|{\psi }_{\sigma }\left(t\right)〉$，相位

${\Phi }_{\sigma }\left(t\right)=\frac{1}{\hslash }{\int }_{0}^{t}〈{\psi }_{\sigma }\left({t}^{\prime }\right)|\left[\stackrel{^}{H}\left({t}^{\prime }\right)-i\hslash \frac{\partial }{\partial {t}^{\prime }}\right]|{\psi }_{\sigma }\left({t}^{\prime }\right)〉\text{d}{t}^{\prime }$，其中 $\frac{1}{\hslash }{\int }_{0}^{t}〈{\psi }_{\sigma }\left({t}^{\prime }\right)|\stackrel{^}{H}\left({t}^{\prime }\right)|{\psi }_{\sigma }\left({t}^{\prime }\right)〉\text{d}{t}^{\prime }$ 是普通的动力学相位， $\frac{1}{\hslash }{\int }_{0}^{t}〈{\psi }_{\sigma }\left({t}^{\prime }\right)|\left[-i\hslash \frac{\partial }{\partial {t}^{\prime }}\right]|{\psi }_{\sigma }\left({t}^{\prime }\right)〉\text{d}{t}^{\prime }$ 是非循环、非绝热过程中呈现几何特性的相位 [24]。含时Schrödinger方程

$\stackrel{^}{I}\left(t\right)|\psi 〉=\sigma |\psi 〉$ [24] 合在一起时具有含时Schrödinger方程 $\stackrel{^}{H}\left(t\right)|\Psi 〉=i\hslash \frac{\partial }{\partial t}|\Psi 〉$ 的功能。态的演化，其实

$\stackrel{^}{I}\left(t\right)|\psi 〉=\sigma |\psi 〉$ 、不变量方程 $\frac{\partial \stackrel{^}{I}\left(t\right)}{\partial t}+\frac{1}{i\hslash }\left[\stackrel{^}{I},\stackrel{^}{H}\right]=0$ [24] 以及含时Schrödinger方程 $\stackrel{^}{H}\left(t\right)|\Psi 〉=i\hslash \frac{\partial }{\partial t}|\Psi 〉$ 三者

$|\Psi \left(t\right)〉=\mathrm{exp}\left(\frac{1}{i\hslash }\stackrel{^}{H}t\right)|\Psi \left(0\right)〉$。但是如果哈密顿量 $\stackrel{^}{H}$ 含时，有人如果要将Schrödinger方程的解写为 $|\Psi \left(t\right)〉=\mathrm{exp}\left(\frac{1}{i\hslash }\int \stackrel{^}{H}\left(t\right)\text{d}t\right)|\Psi \left(0\right)〉$，这就错误。这是因为不同时刻的哈密顿量如 $\stackrel{^}{H}\left({t}_{1}\right)$$\stackrel{^}{H}\left({t}_{2}\right)$ 不可对易，

3. 几个含时演化量子系统

$i\hslash \frac{\partial {\psi }_{1}}{\partial t}=\frac{\epsilon }{2}{\psi }_{1}+K{\psi }_{2},\text{\hspace{0.17em}}\text{\hspace{0.17em}}i\hslash \frac{\partial {\psi }_{2}}{\partial t}=-\frac{\epsilon }{2}{\psi }_{2}+{K}^{*}{\psi }_{1}$

$i\hslash \frac{\partial }{\partial t}\left(\begin{array}{c}{\psi }_{1}\\ {\psi }_{2}\end{array}\right)=\left(\begin{array}{cc}\frac{\epsilon }{2}& K\\ {K}^{*}& -\frac{\epsilon }{2}\end{array}\right)\left(\begin{array}{c}{\psi }_{1}\\ {\psi }_{2}\end{array}\right)\equiv H\left(\begin{array}{c}{\psi }_{1}\\ {\psi }_{2}\end{array}\right)$

$i\hslash \frac{\partial {\psi }_{1}}{\partial t}=\frac{\epsilon }{2}{\psi }_{1}+K{\text{e}}^{i\omega t}{\psi }_{2}$$i\hslash \frac{\partial {\psi }_{2}}{\partial t}=-\frac{\epsilon }{2}{\psi }_{2}+{K}^{*}{\text{e}}^{-i\omega t}{\psi }_{1}$

$\begin{array}{c}i\hslash \frac{\partial {\stackrel{˜}{\psi }}_{1}}{\partial t}=i\hslash \frac{\partial {\psi }_{1}}{\partial t}{\text{e}}^{i\alpha t}-\hslash \alpha {\stackrel{˜}{\psi }}_{1}=\left(\frac{\epsilon }{2}{\psi }_{1}+K{\psi }_{2}{\text{e}}^{i\omega t}\right){\text{e}}^{i\alpha t}-\hslash \alpha {\stackrel{˜}{\psi }}_{1}\\ =\left(\frac{\epsilon }{2}-\hslash \alpha \right){\stackrel{˜}{\psi }}_{1}+K{\psi }_{2}{\text{e}}^{i\left(\alpha t+\omega t\right)}\end{array}$

$\begin{array}{c}i\hslash \frac{\partial {\stackrel{˜}{\psi }}_{2}}{\partial t}=i\hslash \frac{\partial {\psi }_{2}}{\partial t}{\text{e}}^{i\beta t}-\hslash \beta {\stackrel{˜}{\psi }}_{2}=\left(-\frac{\epsilon }{2}{\psi }_{2}+{K}^{*}{\psi }_{1}{\text{e}}^{-i\omega t}\right){\text{e}}^{i\beta t}-\hslash \beta {\stackrel{˜}{\psi }}_{2}\\ =\left(-\frac{\epsilon }{2}-\hslash \beta \right){\stackrel{˜}{\psi }}_{2}+{K}^{*}{\psi }_{1}{\text{e}}^{i\left(\beta t-\omega t\right)}\end{array}$

$i\hslash \frac{\partial {\stackrel{˜}{\psi }}_{1}}{\partial t}=\left(\frac{\epsilon }{2}-\hslash \alpha \right){\stackrel{˜}{\psi }}_{1}+K{\stackrel{˜}{\psi }}_{2}$$i\hslash \frac{\partial {\stackrel{˜}{\psi }}_{2}}{\partial t}=\left(-\frac{\epsilon }{2}-\hslash \beta \right){\stackrel{˜}{\psi }}_{2}+{K}^{*}{\stackrel{˜}{\psi }}_{1}$

$\beta =-\alpha$。于是，我们可以取 $\beta =-\alpha =\omega /2$ (其它虽满足 $\beta -\alpha =\omega$ 但不满足 $\beta =-\alpha$$\alpha ,\beta$ 也是允许的。所有多种选择之间无非仅仅差了一个或几个幺正变换)。现在我们看到，原本耦合系数含有“时谐振荡因子” ${\text{e}}^{±i\omega t}$ 的哈密顿量，通过一个幺正变换，就变为了不含时的哈密顿量。由此说明，耦合系数含“时谐振荡因子”的哈密顿量系统，不带有几何相位。但是，如果哈密顿量的耦合系数含时因子不能写成时谐振荡因子 ${\text{e}}^{±i\omega t}$，那么就不存在这么一个简单的幺正变换，因此也就无法将含时的哈密顿量变换为定态(不含时)的哈密顿量，这样的系统肯定会携带几何相位。

$\begin{array}{c}\left(\begin{array}{cc}\frac{\epsilon }{2}& K\\ {K}^{*}& -\frac{\epsilon }{2}\end{array}\right)=K\left(\begin{array}{cc}0& 1\\ 0& 0\end{array}\right)+{K}^{*}\left(\begin{array}{cc}0& 0\\ 1& 0\end{array}\right)+\frac{\epsilon }{2}\left(\begin{array}{cc}1& 0\\ 0& -1\end{array}\right)=K{J}_{+}+{K}^{*}{J}_{-}+\epsilon {J}_{3}\\ =\hslash {\omega }_{0}\left\{\frac{1}{2}\mathrm{sin}\theta \mathrm{exp}\left[-i\phi \right]{J}_{+}+\frac{1}{2}\mathrm{sin}\theta \mathrm{exp}\left[i\phi \right]{J}_{-}+\mathrm{cos}\theta {J}_{3}\right\}\end{array}$

$\hslash {\omega }_{0}\mathrm{cos}\theta =\epsilon$$\hslash {\omega }_{0}\frac{1}{2}\mathrm{sin}\theta \mathrm{exp}\left[-i\phi \right]=K$$\hslash {\omega }_{0}\frac{1}{2}\mathrm{sin}\theta \mathrm{exp}\left[i\phi \right]={K}^{*}$${\left(\hslash {\omega }_{0}\right)}^{2}={\epsilon }^{2}+4{K}^{*}K$

${\stackrel{˙}{a}}_{1}=\frac{i}{2}{\Omega }^{*}{a}_{2}$${\stackrel{˙}{a}}_{2}=-i\Delta {a}_{2}+\frac{i}{2}\Omega {a}_{1}$

$\frac{\partial {\stackrel{˜}{a}}_{1}}{\partial t}={\stackrel{˙}{a}}_{1}\mathrm{exp}\left(i\Delta t/2\right)+\left(i\Delta /2\right){\stackrel{˜}{a}}_{1}=\frac{i}{2}{\Omega }^{*}{a}_{2}\mathrm{exp}\left(i\Delta t/2\right)+\left(i\Delta /2\right){\stackrel{˜}{a}}_{1}=i\frac{\Delta }{2}{\stackrel{˜}{a}}_{1}+\frac{i}{2}{\Omega }^{*}{\stackrel{˜}{a}}_{2}$

$\frac{\partial {\stackrel{˜}{a}}_{2}}{\partial t}={\stackrel{˙}{a}}_{2}\mathrm{exp}\left(i\Delta t/2\right)+\left(i\Delta /2\right){\stackrel{˜}{a}}_{2}=\left(-i\Delta {a}_{2}+\frac{i}{2}\Omega {a}_{1}\right)\mathrm{exp}\left(i\Delta t/2\right)+\left(i\Delta /2\right){\stackrel{˜}{a}}_{2}=-\frac{i}{2}\Delta {\stackrel{˜}{a}}_{2}+\frac{i}{2}\Omega {\stackrel{˜}{a}}_{1}$

$\frac{\partial {\stackrel{˜}{a}}_{1}}{\partial t}=i\frac{\Delta }{2}{\stackrel{˜}{a}}_{1}+\frac{i}{2}{\Omega }^{*}{\stackrel{˜}{a}}_{2}$$\frac{\partial {\stackrel{˜}{a}}_{2}}{\partial t}=-\frac{i}{2}\Delta {\stackrel{˜}{a}}_{2}+\frac{i}{2}\Omega {\stackrel{˜}{a}}_{1}$

$i\hslash \frac{\partial }{\partial t}\left(\begin{array}{c}{\stackrel{˜}{a}}_{1}\\ {\stackrel{˜}{a}}_{2}\end{array}\right)=\left(\begin{array}{cc}-\frac{\hslash \Delta }{2}& -\frac{1}{2}\hslash {\Omega }^{*}\\ -\frac{1}{2}\hslash \Omega & \frac{\hslash \Delta }{2}\end{array}\right)\left(\begin{array}{c}{\stackrel{˜}{a}}_{1}\\ {\stackrel{˜}{a}}_{2}\end{array}\right)\equiv H\left(\begin{array}{c}{\stackrel{˜}{a}}_{1}\\ {\stackrel{˜}{a}}_{2}\end{array}\right)$

$\frac{\partial }{\partial t}\left(\begin{array}{c}{a}_{1}\\ {a}_{2}\end{array}\right)=\left(\begin{array}{cc}0& \frac{i}{2}{\Omega }^{*}\\ \frac{i}{2}\Omega & -i\Delta \end{array}\right)\left(\begin{array}{c}{a}_{1}\\ {a}_{2}\end{array}\right)$

$H=\left(\begin{array}{cc}0& \frac{i}{2}{\Omega }^{*}\\ \frac{i}{2}\Omega & -i\Delta \end{array}\right)=\left(\begin{array}{cc}i\frac{\Delta }{2}& \frac{i}{2}{\Omega }^{*}\\ \frac{i}{2}\Omega & -i\frac{\Delta }{2}\end{array}\right)-\left(\begin{array}{cc}i\frac{\Delta }{2}& 0\\ 0& i\frac{\Delta }{2}\end{array}\right)$

$\frac{\partial }{\partial t}\left(\begin{array}{c}{a}_{1}\\ {a}_{2}\end{array}\right)=\left[\frac{\partial }{\partial t}\left(\begin{array}{c}{\stackrel{˜}{a}}_{1}\\ {\stackrel{˜}{a}}_{2}\end{array}\right)\right]\mathrm{exp}\left(-i\frac{\Delta }{2}t\right)+\left(-i\frac{\Delta }{2}\right)\left(\begin{array}{c}{\stackrel{˜}{a}}_{1}\\ {\stackrel{˜}{a}}_{2}\end{array}\right)\mathrm{exp}\left(-i\frac{\Delta }{2}t\right)$

$\begin{array}{l}\left[\frac{\partial }{\partial t}\left(\begin{array}{c}{\stackrel{˜}{a}}_{1}\\ {\stackrel{˜}{a}}_{2}\end{array}\right)\right]\mathrm{exp}\left(-i\frac{\Delta }{2}t\right)+\left(-i\frac{\Delta }{2}\right)\left(\begin{array}{c}{\stackrel{˜}{a}}_{1}\\ {\stackrel{˜}{a}}_{2}\end{array}\right)\mathrm{exp}\left(-i\frac{\Delta }{2}t\right)\\ =\left(\begin{array}{cc}i\frac{\Delta }{2}& \frac{i}{2}{\Omega }^{*}\\ \frac{i}{2}\Omega & -i\frac{\Delta }{2}\end{array}\right)\left(\begin{array}{c}{\stackrel{˜}{a}}_{1}\\ {\stackrel{˜}{a}}_{2}\end{array}\right)\mathrm{exp}\left(-i\frac{\Delta }{2}t\right)-\left(\begin{array}{cc}i\frac{\Delta }{2}& 0\\ 0& i\frac{\Delta }{2}\end{array}\right)\left(\begin{array}{c}{\stackrel{˜}{a}}_{1}\\ {\stackrel{˜}{a}}_{2}\end{array}\right)\mathrm{exp}\left(-i\frac{\Delta }{2}t\right)\end{array}$

$\frac{\partial }{\partial t}\left(\begin{array}{c}{\stackrel{˜}{a}}_{1}\\ {\stackrel{˜}{a}}_{2}\end{array}\right)=\left(\begin{array}{cc}i\frac{\Delta }{2}& \frac{i}{2}{\Omega }^{*}\\ \frac{i}{2}\Omega & -i\frac{\Delta }{2}\end{array}\right)\left(\begin{array}{c}{\stackrel{˜}{a}}_{1}\\ {\stackrel{˜}{a}}_{2}\end{array}\right)$

${B}^{\prime }=-\frac{1}{{c}^{2}}v×E$。于是自旋磁矩与磁感应强度的耦合哈密顿量是 $H=-\mu \cdot {B}^{\prime }=\mu \cdot \left(\frac{1}{{c}^{2}}v×E\right)=v\cdot \left(\frac{1}{{c}^{2}}E×\mu \right)$。 令 $\frac{1}{{c}^{2}}E×\mu =-gA$，那么自旋粒子与场的耦合哈密顿量是 $H=-gA\cdot v$ (其在数学结构上类似于电流与磁

$i\hslash \frac{\partial }{\partial t}{|\Psi \left(t\right)〉}_{s}=\stackrel{^}{H}\left(t\right){|\Psi \left(t\right)〉}_{s}$，它的解可以写为 ${|\Psi \left(t\right)〉}_{s}=\mathrm{exp}\left[\frac{1}{i\hslash }\varphi \left(t\right)\right]{|\Psi \left(t\right)〉}_{I}$，其中 ${|\Psi \left(t\right)〉}_{I}$

Lewis-Riesenfeld不变量算符 $I\left(t\right)$ 的本征态： $I\left(t\right){|\Psi \left(t\right)〉}_{I}=\sigma {|\Psi \left(t\right)〉}_{I}$。此不变量 $I\left(t\right)$ 满足方程 $\frac{\partial I\left(t\right)}{\partial t}+\frac{1}{i\hslash }\left[I\left(t\right),H\left(t\right)\right]=0$。含时Schrödinger方程解析解 ${|\Psi \left(t\right)〉}_{s}$ 中的相位为

$\varphi \left(t\right)=\frac{1}{\hslash }{\int }_{0}^{t}{}_{I}〈\Psi \left({t}^{\prime }\right)|H\left({t}^{\prime }\right)-i\hslash \frac{\partial }{\partial {t}^{\prime }}{|\Psi \left({t}^{\prime }\right)〉}_{I}\text{d}{t}^{\prime }$。这个相位为两部分之和。我们可以分别称呼其为动力学相位(与哈密顿量算符 $H\left({t}^{\prime }\right)$ 有关)和几何相位(与导数算符 $-i\hslash \frac{\partial }{\partial {t}^{\prime }}$ 有关)。我们的任务就落实于求解

Lewis-Riesenfeld不变量方程中的不变量算符 $I\left(t\right)$ 以及本征值方程( $I\left(t\right){|\Psi \left(t\right)〉}_{I}=\sigma {|\Psi \left(t\right)〉}_{I}$ )。

4. 几种计算态矢量与相位的方法

1) 使用不变量理论, 但不使用幺正变换方法：

$I\left(t\right)=l\left(t\right)\cdot J=\frac{1}{2}\mathrm{sin}\lambda \left(t\right)\mathrm{exp}\left[-i\gamma \left(t\right)\right]{J}_{+}+\frac{1}{2}\mathrm{sin}\lambda \left(t\right)\mathrm{exp}\left[i\gamma \left(t\right)\right]{J}_{-}+\mathrm{cos}\lambda \left(t\right){J}_{3}$

${|\Psi \left(t\right)〉}_{+}=\left(\begin{array}{c}\mathrm{cos}\frac{\lambda \left(t\right)}{2}\\ \mathrm{sin}\frac{\lambda \left(t\right)}{2}{\text{e}}^{i\gamma \left(t\right)}\end{array}\right)$${|\Psi \left(t\right)〉}_{-}=\left(\begin{array}{c}-\mathrm{sin}\frac{\lambda \left(t\right)}{2}{\text{e}}^{-i\gamma \left(t\right)}\\ \mathrm{cos}\frac{\lambda \left(t\right)}{2}\end{array}\right)$

$\omega \left(t\right)={\omega }_{0}\left(t\right)\left[\mathrm{sin}\theta \left(t\right)\mathrm{cos}\phi \left(t\right),\mathrm{sin}\theta \left(t\right)\mathrm{sin}\phi \left(t\right),\mathrm{cos}\theta \left(t\right)\right]$

$\begin{array}{l}{}_{+}〈\Psi \left(t\right)|H\left(t\right){|\Psi \left(t\right)〉}_{+}\\ =\frac{1}{2}\hslash {\omega }_{0}\left(t\right)\left(\begin{array}{cc}\mathrm{cos}\frac{\lambda \left(t\right)}{2}& \mathrm{sin}\frac{\lambda \left(t\right)}{2}{\text{e}}^{-i\gamma \left(t\right)}\end{array}\right)\left(\begin{array}{cc}\mathrm{cos}\theta \left(t\right)& {\text{e}}^{-i\phi \left(t\right)}\mathrm{sin}\theta \left(t\right)\\ {\text{e}}^{i\phi \left(t\right)}\mathrm{sin}\theta \left(t\right)& -\mathrm{cos}\theta \left(t\right)\end{array}\right)\left(\begin{array}{c}\mathrm{cos}\frac{\lambda \left(t\right)}{2}\\ \mathrm{sin}\frac{\lambda \left(t\right)}{2}{\text{e}}^{i\gamma \left(t\right)}\end{array}\right)\\ =\frac{1}{2}\hslash {\omega }_{0}\left(t\right)\left[\mathrm{cos}\theta \left(t\right)\mathrm{cos}\lambda \left(t\right)+\mathrm{sin}\theta \left(t\right)\mathrm{sin}\lambda \left(t\right)\mathrm{cos}\left(\gamma -\phi \right)\right]\end{array}$

$\begin{array}{c}\frac{\partial }{\partial t}{|\Psi \left(t\right)〉}_{+}=\frac{\partial }{\partial t}\left(\begin{array}{c}\mathrm{cos}\frac{\lambda \left(t\right)}{2}\\ \mathrm{sin}\frac{\lambda \left(t\right)}{2}{\text{e}}^{i\gamma \left(t\right)}\end{array}\right)\\ =\left(\begin{array}{c}-\stackrel{˙}{\lambda }\left(t\right)\frac{1}{2}\mathrm{sin}\frac{\lambda \left(t\right)}{2}\\ \stackrel{˙}{\lambda }\left(t\right)\frac{1}{2}\mathrm{cos}\frac{\lambda \left(t\right)}{2}{\text{e}}^{i\gamma \left(t\right)}+i\stackrel{˙}{\gamma }\left(t\right)\mathrm{sin}\frac{\lambda \left(t\right)}{2}{\text{e}}^{i\gamma \left(t\right)}\end{array}\right)\end{array}$

$\begin{array}{l}{}_{+}〈\Psi \left(t\right)|\frac{\partial }{\partial t}{|\Psi \left(t\right)〉}_{+}\\ =\left(\begin{array}{cc}\mathrm{cos}\frac{\lambda \left(t\right)}{2}& \mathrm{sin}\frac{\lambda \left(t\right)}{2}{\text{e}}^{-i\gamma \left(t\right)}\end{array}\right)\left(\begin{array}{c}-\stackrel{˙}{\lambda }\left(t\right)\frac{1}{2}\mathrm{sin}\frac{\lambda \left(t\right)}{2}\\ \stackrel{˙}{\lambda }\left(t\right)\frac{1}{2}\mathrm{cos}\frac{\lambda \left(t\right)}{2}{\text{e}}^{i\gamma \left(t\right)}+i\stackrel{˙}{\gamma }\left(t\right)\mathrm{sin}\frac{\lambda \left(t\right)}{2}{\text{e}}^{i\gamma \left(t\right)}\end{array}\right)\\ =i\stackrel{˙}{\gamma }\left(t\right){\mathrm{sin}}^{2}\frac{\lambda \left(t\right)}{2}=\frac{i}{2}\stackrel{˙}{\gamma }\left(t\right)\left(1-\mathrm{cos}\lambda \left(t\right)\right)\end{array}$

$\begin{array}{l}{}_{+}〈\Psi \left(t\right)|H\left(t\right){|\Psi \left(t\right)〉}_{+}-i{\hslash }_{+}〈\Psi \left(t\right)|\frac{\partial }{\partial t}{|\Psi \left(t\right)〉}_{+}\\ =\frac{1}{2}\hslash {\omega }_{0}\left(t\right)\left[\mathrm{cos}\theta \left(t\right)\mathrm{cos}\lambda \left(t\right)+\mathrm{sin}\theta \left(t\right)\mathrm{sin}\lambda \left(t\right)\mathrm{cos}\left(\gamma -\phi \right)\right]+\frac{1}{2}\hslash \stackrel{˙}{\gamma }\left(t\right)\left(1-\mathrm{cos}\lambda \left(t\right)\right)\end{array}$

2) 使用幺正变换方法 [26]，但避用Baker-Campbell-Hausdorff公式：

$\mathrm{exp}\left(in\cdot \sigma \theta \right)=\mathrm{cos}\theta +in\cdot \sigma \mathrm{sin}\theta =\left(\begin{array}{cc}\mathrm{cos}\theta +i{n}_{3}\mathrm{sin}\theta & i\left({n}_{1}-i{n}_{2}\right)\mathrm{sin}\theta \\ i\left({n}_{1}+i{n}_{2}\right)\mathrm{sin}\theta & \mathrm{cos}\theta -i{n}_{3}\mathrm{sin}\theta \end{array}\right)$

$\mathrm{exp}\left[\alpha \left({\sigma }_{1}+i{\sigma }_{2}\right)-{\alpha }^{*}\left({\sigma }_{1}-i{\sigma }_{2}\right)\right]=\mathrm{exp}\left\{i\left[\frac{1}{i}\left(\alpha -{\alpha }^{*}\right){\sigma }_{1}+\left(\alpha +{\alpha }^{*}\right){\sigma }_{2}\right]\right\}$。与上面的式子比较，我们可以得到 ${n}_{1}\theta =\frac{1}{i}\left(\alpha -{\alpha }^{*}\right)$${n}_{2}\theta =\alpha +{\alpha }^{*}$${n}_{3}=0$，其中 $\theta =\sqrt{-{\left(\alpha -{\alpha }^{*}\right)}^{2}+{\left(\alpha +{\alpha }^{*}\right)}^{2}}=2\sqrt{{\alpha }^{*}\alpha }$${n}_{1}=\frac{-i\left(\alpha -{\alpha }^{*}\right)}{2\sqrt{{\alpha }^{*}\alpha }}$${n}_{2}=\frac{\alpha +{\alpha }^{*}}{2\sqrt{{\alpha }^{*}\alpha }}$。于是我们得到如下两个关系：

${n}_{1}+i{n}_{2}=\frac{-i\left(\alpha -{\alpha }^{*}\right)}{2\sqrt{{\alpha }^{*}\alpha }}+i\frac{\alpha +{\alpha }^{*}}{2\sqrt{{\alpha }^{*}\alpha }}=\frac{i{\alpha }^{*}}{\sqrt{{\alpha }^{*}\alpha }}$${n}_{1}-i{n}_{2}=\frac{-i\left(\alpha -{\alpha }^{*}\right)}{2\sqrt{{\alpha }^{*}\alpha }}-i\frac{\alpha +{\alpha }^{*}}{2\sqrt{{\alpha }^{*}\alpha }}=-\frac{i\alpha }{\sqrt{{\alpha }^{*}\alpha }}$

$\begin{array}{l}\mathrm{exp}\left[\alpha \left({\sigma }_{1}+i{\sigma }_{2}\right)-{\alpha }^{*}\left({\sigma }_{1}-i{\sigma }_{2}\right)\right]=\left(\begin{array}{cc}\mathrm{cos}\theta & i\left({n}_{1}-i{n}_{2}\right)\mathrm{sin}\theta \\ i\left({n}_{1}+i{n}_{2}\right)\mathrm{sin}\theta & \mathrm{cos}\theta \end{array}\right)\\ =\left(\begin{array}{cc}\mathrm{cos}\left(2\sqrt{{\alpha }^{*}\alpha }\right)& \frac{\alpha }{\sqrt{{\alpha }^{*}\alpha }}\mathrm{sin}\left(2\sqrt{{\alpha }^{*}\alpha }\right)\\ -\frac{{\alpha }^{*}}{\sqrt{{\alpha }^{*}\alpha }}\mathrm{sin}\left(2\sqrt{{\alpha }^{*}\alpha }\right)& \mathrm{cos}\left(2\sqrt{{\alpha }^{*}\alpha }\right)\end{array}\right)\end{array}$

$\begin{array}{l}\mathrm{exp}\left[-\frac{\lambda }{2}{\text{e}}^{-i\gamma }\left(\frac{{\sigma }_{1}+i{\sigma }_{2}}{2}\right)-\left(-\frac{\lambda }{2}{\text{e}}^{i\gamma }\right)\left(\frac{{\sigma }_{1}-i{\sigma }_{2}}{2}\right)\right]\\ =\left(\begin{array}{cc}\mathrm{cos}\frac{\lambda }{2}& -{\text{e}}^{-i\gamma }\mathrm{sin}\frac{\lambda }{2}\\ {\text{e}}^{i\gamma }\mathrm{sin}\frac{\lambda }{2}& \mathrm{cos}\frac{\lambda }{2}\end{array}\right)\end{array}$

$\begin{array}{c}I\left(t\right)=l\left(t\right)\cdot J\\ =\frac{1}{2}\mathrm{sin}\lambda \left(t\right)\mathrm{exp}\left[-i\gamma \left(t\right)\right]{J}_{+}+\frac{1}{2}\mathrm{sin}\lambda \left(t\right)\mathrm{exp}\left[i\gamma \left(t\right)\right]{J}_{-}+\mathrm{cos}\lambda \left(t\right){J}_{3}\\ =\frac{1}{2}\left(\begin{array}{cc}\mathrm{cos}\lambda & {\text{e}}^{-i\gamma }\mathrm{sin}\lambda \\ {\text{e}}^{i\gamma }\mathrm{sin}\lambda & -\mathrm{cos}\lambda \end{array}\right)\end{array}$

$V=\left(\begin{array}{cc}\mathrm{cos}\frac{\lambda }{2}& -{\text{e}}^{-i\gamma }\mathrm{sin}\frac{\lambda }{2}\\ {\text{e}}^{i\gamma }\mathrm{sin}\frac{\lambda }{2}& \mathrm{cos}\frac{\lambda }{2}\end{array}\right)$${V}^{+}=\left(\begin{array}{cc}\mathrm{cos}\frac{\lambda }{2}& {\text{e}}^{-i\gamma }\mathrm{sin}\frac{\lambda }{2}\\ -{\text{e}}^{i\gamma }\mathrm{sin}\frac{\lambda }{2}& \mathrm{cos}\frac{\lambda }{2}\end{array}\right)$

$\begin{array}{c}{V}^{+}IV=\left(\begin{array}{cc}\mathrm{cos}\frac{\lambda }{2}& {\text{e}}^{-i\gamma }\mathrm{sin}\frac{\lambda }{2}\\ -{\text{e}}^{i\gamma }\mathrm{sin}\frac{\lambda }{2}& \mathrm{cos}\frac{\lambda }{2}\end{array}\right)\frac{1}{2}\left(\begin{array}{cc}\mathrm{cos}\lambda & {\text{e}}^{-i\gamma }\mathrm{sin}\lambda \\ {\text{e}}^{i\gamma }\mathrm{sin}\lambda & -\mathrm{cos}\lambda \end{array}\right)\left(\begin{array}{cc}\mathrm{cos}\frac{\lambda }{2}& -{\text{e}}^{-i\gamma }\mathrm{sin}\frac{\lambda }{2}\\ {\text{e}}^{i\gamma }\mathrm{sin}\frac{\lambda }{2}& \mathrm{cos}\frac{\lambda }{2}\end{array}\right)\\ =\frac{1}{2}\left(\begin{array}{cc}\mathrm{cos}\frac{\lambda }{2}& {\text{e}}^{-i\gamma }\mathrm{sin}\frac{\lambda }{2}\\ -{\text{e}}^{i\gamma }\mathrm{sin}\frac{\lambda }{2}& \mathrm{cos}\frac{\lambda }{2}\end{array}\right)\left(\begin{array}{cc}\mathrm{cos}\lambda \mathrm{cos}\frac{\lambda }{2}+\mathrm{sin}\lambda \mathrm{sin}\frac{\lambda }{2}& -{\text{e}}^{-i\gamma }\mathrm{cos}\lambda \mathrm{sin}\frac{\lambda }{2}+{\text{e}}^{-i\gamma }\mathrm{sin}\lambda \mathrm{cos}\frac{\lambda }{2}\\ {\text{e}}^{i\gamma }\mathrm{sin}\lambda \mathrm{cos}\frac{\lambda }{2}-{\text{e}}^{i\gamma }\mathrm{cos}\lambda \mathrm{sin}\frac{\lambda }{2}& -\mathrm{sin}\lambda \mathrm{sin}\frac{\lambda }{2}-\mathrm{cos}\lambda \mathrm{cos}\frac{\lambda }{2}\end{array}\right)\\ =\frac{1}{2}\left(\begin{array}{cc}\mathrm{cos}\frac{\lambda }{2}& {\text{e}}^{-i\gamma }\mathrm{sin}\frac{\lambda }{2}\\ -{\text{e}}^{i\gamma }\mathrm{sin}\frac{\lambda }{2}& \mathrm{cos}\frac{\lambda }{2}\end{array}\right)\left(\begin{array}{cc}\mathrm{cos}\frac{\lambda }{2}& {\text{e}}^{-i\gamma }\mathrm{sin}\frac{\lambda }{2}\\ {\text{e}}^{i\gamma }\mathrm{sin}\frac{\lambda }{2}& -\mathrm{cos}\frac{\lambda }{2}\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}1& 0\\ 0& -1\end{array}\right)\end{array}$

$\begin{array}{c}{V}^{+}HV\\ =\left(\begin{array}{cc}\mathrm{cos}\frac{\lambda }{2}& {\text{e}}^{-i\gamma }\mathrm{sin}\frac{\lambda }{2}\\ -{\text{e}}^{i\gamma }\mathrm{sin}\frac{\lambda }{2}& \mathrm{cos}\frac{\lambda }{2}\end{array}\right)\frac{1}{2}\hslash {\omega }_{0}\left(t\right)\left(\begin{array}{cc}\mathrm{cos}\theta & {\text{e}}^{-i\phi }\mathrm{sin}\theta \\ {\text{e}}^{i\phi }\mathrm{sin}\theta & -\mathrm{cos}\theta \end{array}\right)\left(\begin{array}{cc}\mathrm{cos}\frac{\lambda }{2}& -{\text{e}}^{-i\gamma }\mathrm{sin}\frac{\lambda }{2}\\ {\text{e}}^{i\gamma }\mathrm{sin}\frac{\lambda }{2}& \mathrm{cos}\frac{\lambda }{2}\end{array}\right)\\ =\frac{1}{2}\hslash {\omega }_{0}\left(t\right)\left(\begin{array}{cc}\mathrm{cos}\frac{\lambda }{2}& {\text{e}}^{-i\gamma }\mathrm{sin}\frac{\lambda }{2}\\ -{\text{e}}^{i\gamma }\mathrm{sin}\frac{\lambda }{2}& \mathrm{cos}\frac{\lambda }{2}\end{array}\right)\left(\begin{array}{cc}\mathrm{cos}\theta \mathrm{cos}\frac{\lambda }{2}+{\text{e}}^{-i\left(\phi -\gamma \right)}\mathrm{sin}\theta \mathrm{sin}\frac{\lambda }{2}& -{\text{e}}^{-i\gamma }\mathrm{cos}\theta \mathrm{sin}\frac{\lambda }{2}+{\text{e}}^{-i\phi }\mathrm{sin}\theta \mathrm{cos}\frac{\lambda }{2}\\ {\text{e}}^{i\phi }\mathrm{sin}\theta \mathrm{cos}\frac{\lambda }{2}-{\text{e}}^{i\gamma }\mathrm{cos}\theta \mathrm{sin}\frac{\lambda }{2}& -{\text{e}}^{i\left(\phi -\gamma \right)}\mathrm{sin}\theta \mathrm{sin}\frac{\lambda }{2}-\mathrm{cos}\theta \mathrm{cos}\frac{\lambda }{2}\end{array}\right)\\ =\frac{1}{2}\hslash {\omega }_{0}\left(t\right)\left(\begin{array}{cc}{a}_{11}& {a}_{12}\\ {a}_{21}& {a}_{22}\end{array}\right)\end{array}$

$\begin{array}{l}{a}_{11}=\mathrm{cos}\frac{\lambda }{2}\left(\mathrm{cos}\theta \mathrm{cos}\frac{\lambda }{2}+{\text{e}}^{-i\left(\phi -\gamma \right)}\mathrm{sin}\theta \mathrm{sin}\frac{\lambda }{2}\right)+{\text{e}}^{-i\gamma }\mathrm{sin}\frac{\lambda }{2}\left({\text{e}}^{i\phi }\mathrm{sin}\theta \mathrm{cos}\frac{\lambda }{2}-{\text{e}}^{i\gamma }\mathrm{cos}\theta \mathrm{sin}\frac{\lambda }{2}\right),\\ {a}_{12}=\mathrm{cos}\frac{\lambda }{2}\left(-{\text{e}}^{-i\gamma }\mathrm{cos}\theta \mathrm{sin}\frac{\lambda }{2}+{\text{e}}^{-i\phi }\mathrm{sin}\theta \mathrm{cos}\frac{\lambda }{2}\right)+{\text{e}}^{-i\gamma }\mathrm{sin}\frac{\lambda }{2}\left(-{\text{e}}^{i\left(\phi -\gamma \right)}\mathrm{sin}\theta \mathrm{sin}\frac{\lambda }{2}-\mathrm{cos}\theta \mathrm{cos}\frac{\lambda }{2}\right),\\ {a}_{21}=-{\text{e}}^{i\gamma }\mathrm{sin}\frac{\lambda }{2}\left(\mathrm{cos}\theta \mathrm{cos}\frac{\lambda }{2}+{\text{e}}^{-i\left(\phi -\gamma \right)}\mathrm{sin}\theta \mathrm{sin}\frac{\lambda }{2}\right)+\mathrm{cos}\frac{\lambda }{2}\left({\text{e}}^{i\phi }\mathrm{sin}\theta \mathrm{cos}\frac{\lambda }{2}-{\text{e}}^{i\gamma }\mathrm{cos}\theta \mathrm{sin}\frac{\lambda }{2}\right),\\ {a}_{22}=-{\text{e}}^{i\gamma }\mathrm{sin}\frac{\lambda }{2}\left(-{\text{e}}^{-i\gamma }\mathrm{cos}\theta \mathrm{sin}\frac{\lambda }{2}+{\text{e}}^{-i\phi }\mathrm{sin}\theta \mathrm{cos}\frac{\lambda }{2}\right)+\mathrm{cos}\frac{\lambda }{2}\left(-{\text{e}}^{i\left(\phi -\gamma \right)}\mathrm{sin}\theta \mathrm{sin}\frac{\lambda }{2}-\mathrm{cos}\theta \mathrm{cos}\frac{\lambda }{2}\right)\end{array}$

$\begin{array}{l}{a}_{11}=\mathrm{cos}\theta \mathrm{cos}\lambda +\mathrm{sin}\theta \mathrm{sin}\lambda \mathrm{cos}\left(\phi -\gamma \right),\\ {a}_{12}=-{\text{e}}^{-i\gamma }\mathrm{cos}\theta \mathrm{sin}\lambda +{\text{e}}^{-i\gamma }\mathrm{sin}\theta \left({\text{e}}^{-i\left(\phi -\gamma \right)}{\mathrm{cos}}^{2}\frac{\lambda }{2}-{\text{e}}^{i\left(\phi -\gamma \right)}{\mathrm{sin}}^{2}\frac{\lambda }{2}\right),\\ {a}_{21}=-{\text{e}}^{i\gamma }\mathrm{cos}\theta \mathrm{sin}\lambda +{\text{e}}^{i\gamma }\mathrm{sin}\theta \left({\text{e}}^{i\left(\phi -\gamma \right)}{\mathrm{cos}}^{2}\frac{\lambda }{2}-{\text{e}}^{-i\left(\phi -\gamma \right)}{\mathrm{sin}}^{2}\frac{\lambda }{2}\right),\\ {a}_{22}=-\mathrm{cos}\theta \mathrm{cos}\lambda -\mathrm{sin}\theta \mathrm{sin}\lambda \mathrm{cos}\left(\phi -\gamma \right)\end{array}$

$\begin{array}{c}{a}_{12}=-{\text{e}}^{-i\gamma }\mathrm{cos}\theta \mathrm{sin}\lambda +{\text{e}}^{-i\gamma }\mathrm{sin}\theta \left({\text{e}}^{-i\left(\phi -\gamma \right)}{\mathrm{cos}}^{2}\frac{\lambda }{2}-{\text{e}}^{i\left(\phi -\gamma \right)}{\mathrm{sin}}^{2}\frac{\lambda }{2}\right)\\ =-{\text{e}}^{-i\gamma }\mathrm{cos}\theta \mathrm{sin}\lambda +{\text{e}}^{-i\gamma }\mathrm{sin}\theta \left(\mathrm{cos}\left(\phi -\gamma \right){\mathrm{cos}}^{2}\frac{\lambda }{2}-i\mathrm{sin}\left(\phi -\gamma \right){\mathrm{cos}}^{2}\frac{\lambda }{2}\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}-\mathrm{cos}\left(\phi -\gamma \right){\mathrm{sin}}^{2}\frac{\lambda }{2}-i\mathrm{sin}\left(\phi -\gamma \right){\mathrm{sin}}^{2}\frac{\lambda }{2}\right)\\ =-{\text{e}}^{-i\gamma }\mathrm{cos}\theta \mathrm{sin}\lambda +{\text{e}}^{-i\gamma }\mathrm{sin}\theta \left(\mathrm{cos}\left(\phi -\gamma \right)\mathrm{cos}\lambda -i\mathrm{sin}\left(\phi -\gamma \right)\right)\end{array}$

$\begin{array}{c}{a}_{21}=-{\text{e}}^{i\gamma }\mathrm{cos}\theta \mathrm{sin}\lambda +{\text{e}}^{i\gamma }\mathrm{sin}\theta \left({\text{e}}^{i\left(\phi -\gamma \right)}{\mathrm{cos}}^{2}\frac{\lambda }{2}-{\text{e}}^{-i\left(\phi -\gamma \right)}{\mathrm{sin}}^{2}\frac{\lambda }{2}\right)\\ =-{\text{e}}^{i\gamma }\mathrm{cos}\theta \mathrm{sin}\lambda +{\text{e}}^{i\gamma }\mathrm{sin}\theta \left(\mathrm{cos}\left(\phi -\gamma \right)\mathrm{cos}\lambda +i\mathrm{sin}\left(\phi -\gamma \right)\right)\end{array}$

$\begin{array}{c}{V}^{+}i\frac{\partial }{\partial t}V=i\left(\begin{array}{cc}\mathrm{cos}\frac{\lambda }{2}& {\text{e}}^{-i\gamma }\mathrm{sin}\frac{\lambda }{2}\\ -{\text{e}}^{i\gamma }\mathrm{sin}\frac{\lambda }{2}& \mathrm{cos}\frac{\lambda }{2}\end{array}\right)\frac{\partial }{\partial t}\left(\begin{array}{cc}\mathrm{cos}\frac{\lambda }{2}& -{\text{e}}^{-i\gamma }\mathrm{sin}\frac{\lambda }{2}\\ {\text{e}}^{i\gamma }\mathrm{sin}\frac{\lambda }{2}& \mathrm{cos}\frac{\lambda }{2}\end{array}\right)\\ =i\left(\begin{array}{cc}\mathrm{cos}\frac{\lambda }{2}& {\text{e}}^{-i\gamma }\mathrm{sin}\frac{\lambda }{2}\\ -{\text{e}}^{i\gamma }\mathrm{sin}\frac{\lambda }{2}& \mathrm{cos}\frac{\lambda }{2}\end{array}\right)\left(\begin{array}{cc}-\frac{\stackrel{˙}{\lambda }}{2}\mathrm{sin}\frac{\lambda }{2}& i\stackrel{˙}{\gamma }{\text{e}}^{-i\gamma }\mathrm{sin}\frac{\lambda }{2}-{\text{e}}^{-i\gamma }\frac{\stackrel{˙}{\lambda }}{2}\mathrm{cos}\frac{\lambda }{2}\\ i\stackrel{˙}{\gamma }{\text{e}}^{i\gamma }\mathrm{sin}\frac{\lambda }{2}+{\text{e}}^{i\gamma }\frac{\stackrel{˙}{\lambda }}{2}\mathrm{cos}\frac{\lambda }{2}& -\frac{\stackrel{˙}{\lambda }}{2}\mathrm{sin}\frac{\lambda }{2}\end{array}\right)\\ =i\left(\begin{array}{cc}-\frac{\stackrel{˙}{\lambda }}{2}\mathrm{cos}\frac{\lambda }{2}\mathrm{sin}\frac{\lambda }{2}+\mathrm{sin}\frac{\lambda }{2}\left(i\stackrel{˙}{\gamma }\mathrm{sin}\frac{\lambda }{2}+\frac{\stackrel{˙}{\lambda }}{2}\mathrm{cos}\frac{\lambda }{2}\right)& {\text{e}}^{-i\gamma }\mathrm{cos}\frac{\lambda }{2}\left(i\stackrel{˙}{\gamma }\mathrm{sin}\frac{\lambda }{2}-\frac{\stackrel{˙}{\lambda }}{2}\mathrm{cos}\frac{\lambda }{2}\right)-{\text{e}}^{-i\gamma }\frac{\stackrel{˙}{\lambda }}{2}{\mathrm{sin}}^{2}\frac{\lambda }{2}\\ \frac{\stackrel{˙}{\lambda }}{2}{\text{e}}^{i\gamma }{\mathrm{sin}}^{2}\frac{\lambda }{2}+{\text{e}}^{i\gamma }\mathrm{cos}\frac{\lambda }{2}\left(i\stackrel{˙}{\gamma }\mathrm{sin}\frac{\lambda }{2}+\frac{\stackrel{˙}{\lambda }}{2}\mathrm{cos}\frac{\lambda }{2}\right)& -\mathrm{sin}\frac{\lambda }{2}\left(i\stackrel{˙}{\gamma }\mathrm{sin}\frac{\lambda }{2}-\frac{\stackrel{˙}{\lambda }}{2}\mathrm{cos}\frac{\lambda }{2}\right)-\frac{\stackrel{˙}{\lambda }}{2}\mathrm{cos}\frac{\lambda }{2}\mathrm{sin}\frac{\lambda }{2}\end{array}\right)\\ =i\left(\begin{array}{cc}i\stackrel{˙}{\gamma }{\mathrm{sin}}^{2}\frac{\lambda }{2}& i\stackrel{˙}{\gamma }{\text{e}}^{-i\gamma }\mathrm{cos}\frac{\lambda }{2}\mathrm{sin}\frac{\lambda }{2}-{\text{e}}^{-i\gamma }\frac{\stackrel{˙}{\lambda }}{2}\\ {\text{e}}^{i\gamma }\frac{\stackrel{˙}{\lambda }}{2}+i\stackrel{˙}{\gamma }{\text{e}}^{i\gamma }\mathrm{cos}\frac{\lambda }{2}\mathrm{sin}\frac{\lambda }{2}& -i\stackrel{˙}{\gamma }{\mathrm{sin}}^{2}\frac{\lambda }{2}\end{array}\right)\\ =\left(\begin{array}{cc}-\stackrel{˙}{\gamma }{\mathrm{sin}}^{2}\frac{\lambda }{2}& -\stackrel{˙}{\gamma }{\text{e}}^{-i\gamma }\mathrm{cos}\frac{\lambda }{2}\mathrm{sin}\frac{\lambda }{2}-i{\text{e}}^{-i\gamma }\frac{\stackrel{˙}{\lambda }}{2}\\ i{\text{e}}^{i\gamma }\frac{\stackrel{˙}{\lambda }}{2}-\stackrel{˙}{\gamma }{\text{e}}^{i\gamma }\mathrm{cos}\frac{\lambda }{2}\mathrm{sin}\frac{\lambda }{2}& \stackrel{˙}{\gamma }{\mathrm{sin}}^{2}\frac{\lambda }{2}\end{array}\right)\end{array}$

$\begin{array}{c}-{V}^{+}i\frac{\partial }{\partial t}V=\left(\begin{array}{cc}\stackrel{˙}{\gamma }\frac{1-\mathrm{cos}\lambda }{2}& \stackrel{˙}{\gamma }{\text{e}}^{-i\gamma }\frac{1}{2}\mathrm{sin}\lambda +i{\text{e}}^{-i\gamma }\frac{\stackrel{˙}{\lambda }}{2}\\ -i{\text{e}}^{i\gamma }\frac{\stackrel{˙}{\lambda }}{2}+\stackrel{˙}{\gamma }{\text{e}}^{i\gamma }\frac{1}{2}\mathrm{sin}\lambda & -\stackrel{˙}{\gamma }\frac{1-\mathrm{cos}\lambda }{2}\end{array}\right)\\ =\frac{1}{2}\left(\begin{array}{cc}\stackrel{˙}{\gamma }\left(1-\mathrm{cos}\lambda \right)& \stackrel{˙}{\gamma }{\text{e}}^{-i\gamma }\mathrm{sin}\lambda +i{\text{e}}^{-i\gamma }\stackrel{˙}{\lambda }\\ -i{\text{e}}^{i\gamma }\stackrel{˙}{\lambda }+\stackrel{˙}{\gamma }{\text{e}}^{i\gamma }\mathrm{sin}\lambda & -\stackrel{˙}{\gamma }\left(1-\mathrm{cos}\lambda \right)\end{array}\right)\end{array}$

$\begin{array}{l}\hslash \left[\frac{1}{2}{\omega }_{0}\left(t\right){a}_{12}+\frac{1}{2}\left(\stackrel{˙}{\gamma }{\text{e}}^{-i\gamma }\mathrm{sin}\lambda +i{\text{e}}^{-i\gamma }\stackrel{˙}{\lambda }\right)\right]\\ =\frac{1}{2}\hslash {\omega }_{0}\left(t\right)\left[-{\text{e}}^{-i\gamma }\mathrm{cos}\theta \mathrm{sin}\lambda +{\text{e}}^{-i\gamma }\mathrm{sin}\theta \left(\mathrm{cos}\left(\phi -\gamma \right)\mathrm{cos}\lambda -i\mathrm{sin}\left(\phi -\gamma \right)\right)\right]\\ +\frac{1}{2}\hslash \left(\stackrel{˙}{\gamma }{\text{e}}^{-i\gamma }\mathrm{sin}\lambda +i{\text{e}}^{-i\gamma }\stackrel{˙}{\lambda }\right)\end{array}$

$\stackrel{˙}{\lambda }={\omega }_{0}\left(t\right)\mathrm{sin}\theta \mathrm{sin}\left(\phi -\gamma \right)$$\stackrel{˙}{\gamma }={\omega }_{0}\left(t\right)\left[\mathrm{cos}\theta -\mathrm{sin}\theta \mathrm{cot}\lambda \mathrm{cos}\left(\phi -\gamma \right)\right]$

$\begin{array}{l}\stackrel{˙}{\gamma }{\text{e}}^{-i\gamma }\mathrm{sin}\lambda +i{\text{e}}^{-i\gamma }\stackrel{˙}{\lambda }\\ ={\omega }_{0}\left(t\right)\left[\mathrm{cos}\theta -\mathrm{sin}\theta \mathrm{cot}\lambda \mathrm{cos}\left(\phi -\gamma \right)\right]{\text{e}}^{-i\gamma }\mathrm{sin}\lambda +i{\text{e}}^{-i\gamma }{\omega }_{0}\left(t\right)\mathrm{sin}\theta \mathrm{sin}\left(\phi -\gamma \right)\\ ={\omega }_{0}\left(t\right)\mathrm{cos}\theta {\text{e}}^{-i\gamma }\mathrm{sin}\lambda -{\omega }_{0}\left(t\right){\text{e}}^{-i\gamma }\mathrm{sin}\theta \mathrm{cos}\lambda \mathrm{cos}\left(\phi -\gamma \right)+i{\text{e}}^{-i\gamma }{\omega }_{0}\left(t\right)\mathrm{sin}\theta \mathrm{sin}\left(\phi -\gamma \right)\end{array}$

$\begin{array}{l}\frac{1}{2}{\omega }_{0}\left(t\right){a}_{12}+\frac{1}{2}\left(\stackrel{˙}{\gamma }{\text{e}}^{-i\gamma }\mathrm{sin}\lambda +i{\text{e}}^{-i\gamma }\stackrel{˙}{\lambda }\right)\\ =\frac{1}{2}{\omega }_{0}\left(t\right)\left[-{\text{e}}^{-i\gamma }\mathrm{cos}\theta \mathrm{sin}\lambda +{\text{e}}^{-i\gamma }\mathrm{sin}\theta \left(\mathrm{cos}\left(\phi -\gamma \right)\mathrm{cos}\lambda -i\mathrm{sin}\left(\phi -\gamma \right)\right)\right]\\ +\frac{1}{2}\left[{\omega }_{0}\left(t\right)\mathrm{cos}\theta {\text{e}}^{-i\gamma }\mathrm{sin}\lambda -{\omega }_{0}\left(t\right){\text{e}}^{-i\gamma }\mathrm{sin}\theta \mathrm{cos}\lambda \mathrm{cos}\left(\phi -\gamma \right)+i{\text{e}}^{-i\gamma }{\omega }_{0}\left(t\right)\mathrm{sin}\theta \mathrm{sin}\left(\phi -\gamma \right)\right]\\ =0\end{array}$

${V}^{+}HV-{V}^{+}i\hslash \frac{\partial }{\partial t}V=\hslash \left\{{\omega }_{0}\left(t\right)\left[\mathrm{cos}\theta \mathrm{cos}\lambda +\mathrm{sin}\theta \mathrm{sin}\lambda \mathrm{cos}\left(\phi -\gamma \right)\right]+\stackrel{˙}{\gamma }\left(1-\mathrm{cos}\lambda \right)\right\}\frac{{\sigma }_{3}}{2}$

3) 既使用幺正变换方法，也使用Baker-Hausdorff公式：

${\text{e}}^{A}B{\text{e}}^{-A}=B+\left[A,B\right]+\frac{1}{2!}\left[A,\left[A,B\right]\right]+\frac{1}{3!}\left[A,\left[A,\left[A,B\right]\right]\right]+\cdots$

$F\left(\alpha \right)={\text{e}}^{\alpha A}B{\text{e}}^{-\alpha A}$$\alpha$ 为某个实参数。下面我们计算算符 $F\left(\alpha \right)$ 的一阶、二阶、三阶关于参数 $\alpha$ 的导数 [61]：

$\frac{\text{d}F\left(\alpha \right)}{\text{d}\alpha }=A{\text{e}}^{\alpha A}B{\text{e}}^{-\alpha A}-{\text{e}}^{\alpha A}B{\text{e}}^{-\alpha A}A=\left[A,F\left(\alpha \right)\right]$

$\frac{{\text{d}}^{2}F\left(\alpha \right)}{\text{d}{\alpha }^{2}}=\left[A,\frac{\text{d}F\left(\alpha \right)}{\text{d}\alpha }\right]=\left[A,\left[A,F\left(\alpha \right)\right]\right]$

$\frac{{\text{d}}^{3}F\left(\alpha \right)}{\text{d}{\alpha }^{3}}=\left[A,\left[A,\frac{\text{d}F\left(\alpha \right)}{\text{d}\alpha }\right]\right]=\left[A,\left[A,\left[A,F\left(\alpha \right)\right]\right]\right]$$\cdots$

$F\left(\alpha \right)=\underset{n=0}{\overset{\infty }{\sum }}\frac{{\alpha }^{n}}{n!}{\frac{{\text{d}}^{n}F\left(\alpha \right)}{\text{d}{\alpha }^{n}}|}_{\alpha =0}=B+\frac{\alpha }{1!}\left[A,B\right]+\frac{{\alpha }^{2}}{2!}\left[A,\left[A,B\right]\right]+\frac{{\alpha }^{3}}{3!}\left[A,\left[A,\left[A,B\right]\right]\right]+\cdots$

$V={\text{e}}^{L}$${V}^{+}={\text{e}}^{-L}$，我定义 $F\left(\alpha \right)={\text{e}}^{-\alpha L}\frac{\partial }{\partial t}{\text{e}}^{\alpha L}$ ( $\alpha$ 是参变量，本身不含时间，时间含在矩阵算符L

$\begin{array}{c}\frac{\text{d}F\left(\alpha \right)}{\text{d}\alpha }=-L{\text{e}}^{-\alpha L}\frac{\partial }{\partial t}{\text{e}}^{\alpha L}+{\text{e}}^{-\alpha L}\frac{\partial }{\partial t}\left({\text{e}}^{\alpha L}L\right)=-L{\text{e}}^{-\alpha L}\frac{\partial }{\partial t}{\text{e}}^{\alpha L}+\left({\text{e}}^{-\alpha L}\frac{\partial }{\partial t}{\text{e}}^{\alpha L}\right)L+\frac{\partial L}{\partial t}\\ =\left[{\text{e}}^{-\alpha L}\frac{\partial }{\partial t}{\text{e}}^{\alpha L},L\right]+\frac{\partial L}{\partial t}=\left[F\left(\alpha \right),L\right]+\frac{\partial L}{\partial t}\end{array}$

$\frac{{\text{d}}^{2}F\left(\alpha \right)}{\text{d}{\alpha }^{2}}=\left[\frac{\text{d}F\left(\alpha \right)}{\text{d}\alpha },L\right]=\left[\left[F\left(\alpha \right),L\right]+\frac{\partial L}{\partial t},L\right]=\left[\left[F\left(\alpha \right),L\right],L\right]+\left[\frac{\partial L}{\partial t},L\right]$

$\frac{{\text{d}}^{3}F\left(\alpha \right)}{\text{d}{\alpha }^{3}}=\left[\left[\frac{\text{d}F\left(\alpha \right)}{\text{d}\alpha },L\right],L\right]=\left[\left[\left[F\left(\alpha \right),L\right],L\right],L\right]+\left[\left[\frac{\partial L}{\partial t},L\right],L\right]$$\cdots$

$\alpha$ 趋近于零时， $F\left(\alpha \right)={\text{e}}^{-\alpha L}\frac{\partial }{\partial t}{\text{e}}^{\alpha L}\to 0$，上面结果变为

$\frac{\text{d}F\left(\alpha \right)}{\text{d}\alpha }\to \frac{\partial L}{\partial t}$$\frac{{\text{d}}^{2}F\left(\alpha \right)}{\text{d}{\alpha }^{2}}\to \left[\frac{\partial L}{\partial t},L\right]$$\frac{{\text{d}}^{3}F\left(\alpha \right)}{\text{d}{\alpha }^{3}}\to \left[\left[\frac{\partial L}{\partial t},L\right],L\right]$$\cdots$

$F\left(\alpha \right)=\underset{n=0}{\overset{\infty }{\sum }}\frac{{\alpha }^{n}}{n!}{\frac{{\text{d}}^{n}F\left(\alpha \right)}{\text{d}{\alpha }^{n}}|}_{\alpha =0}=\frac{\alpha }{1!}\frac{\partial L}{\partial t}+\frac{{\alpha }^{2}}{2!}\left[\frac{\partial L}{\partial t},L\right]+\frac{{\alpha }^{3}}{3!}\left[\left[\frac{\partial L}{\partial t},L\right],L\right]+\cdots$

${\text{e}}^{-L}\frac{\partial }{\partial t}{\text{e}}^{L}=\frac{\partial L}{\partial t}+\frac{1}{2!}\left[\frac{\partial L}{\partial t},L\right]+\frac{1}{3!}\left[\left[\frac{\partial L}{\partial t},L\right],L\right]+\cdots$

$\frac{\partial I\left(t\right)}{\partial t}+\frac{1}{i\hslash }\left[I\left(t\right),H\left(t\right)\right]=0$ [24] 得到的非线性辅助代数方程是 $\stackrel{˙}{\lambda }={\omega }_{0}\left(t\right)\mathrm{sin}\theta \mathrm{sin}\left(\phi -\gamma \right)$

$\stackrel{˙}{\gamma }={\omega }_{0}\left(t\right)\left[\mathrm{cos}\theta -\mathrm{sin}\theta \mathrm{cot}\lambda \mathrm{cos}\left(\phi -\gamma \right)\right]$。这实际上是将Lewis-Riesenfeld不变量算符方程代数化 [26]。该辅助代数方程是关于求解Lewis-Riesenfeld不变量算符 $I\left(t\right)$ 中的含时参数的方程 [24] [26] [27] [28]。

Schrödinger方程对于态矢量 $|\Psi 〉$ 而言，它是线性方程。但是对于态矢量 $|\Psi 〉$ 内的各个分量而言，它就不一定也能说是线性的，这是因为在二态和多态体系中，态矢量内诸分量之间有耦合，且态矢量还要满足归一化约束条件 $〈\Psi |\Psi 〉=1$ (从一定意义上讲，这种约束条件也代表一种耦合)。所以，线性的Schrödinger方程也可能表现非线性混沌特点，即态矢量对初始数值具有敏感性(微挠能指数发散)。从根本上讲，这种耦合效应，也与不同时刻的哈密顿量不可对易也有关系。确实如此，如上面由Lewis-Riesenfeld不变量方程得到的辅助代数方程 $\stackrel{˙}{\lambda }={\omega }_{0}\left(t\right)\mathrm{sin}\theta \mathrm{sin}\left(\phi -\gamma \right)$$\stackrel{˙}{\gamma }={\omega }_{0}\left(t\right)\left[\mathrm{cos}\theta -\mathrm{sin}\theta \mathrm{cot}\lambda \mathrm{cos}\left(\phi -\gamma \right)\right]$ 就是这样的非线性方程(值得一提的是，即使避用不变量算符方程 [24]，仅仅使用Schrödinger方程，也可以得到该组方程。下面一节“对简单系统避用不变量理论和么正变换方法”证明了这个结论)。但这组方程在一定条件下也有定态解，如假设哈密顿量参数 $\phi$ 线性( $\phi =\xi t$ )且 $\theta ={\theta }_{0}$ (常数)，那么我们就有解 $\gamma =\xi t$$\lambda =\mathrm{arctan}\left[\mathrm{sin}{\theta }_{0}/\left(\mathrm{cos}{\theta }_{0}-\xi /{\omega }_{0}\right)\right]$。但是一旦 $\theta \ne {\theta }_{0}$，情况就复杂，一般没有解析解，需要依靠数值计算。由于量子计算中涉及二态体系的演化，因此这种由于参数演化所带来的非线性效应值得研究。

5. 对简单系统避用不变量理论和么正变换方法

$\stackrel{^}{H}=\frac{\hslash \Omega }{2}\left(\begin{array}{cc}\mathrm{cos}\theta & {\text{e}}^{-i\varphi }\mathrm{sin}\theta \\ {\text{e}}^{+i\varphi }\mathrm{sin}\theta & -\mathrm{cos}\theta \end{array}\right)$

$|+〉=\left(\begin{array}{c}\mathrm{cos}\frac{\theta }{2}\\ {\text{e}}^{+i\varphi }\mathrm{sin}\frac{\theta }{2}\end{array}\right)$$|-〉=\left(\begin{array}{c}-{\text{e}}^{-i\varphi }\mathrm{sin}\frac{\theta }{2}\\ \mathrm{cos}\frac{\theta }{2}\end{array}\right)$

$i\hslash \frac{\partial }{\partial t}|\psi 〉=\stackrel{^}{H}|\psi 〉$。此时上面的 $|±〉$ 不再是Schrödinger方程的解。但是我们可以预测，含时Schrödinger方

$|+,t〉=\left(\begin{array}{c}\mathrm{cos}\frac{\lambda }{2}\\ {\text{e}}^{+i\gamma }\mathrm{sin}\frac{\lambda }{2}\end{array}\right)$$|-,t〉=\left(\begin{array}{c}-{\text{e}}^{-i\gamma }\mathrm{sin}\frac{\lambda }{2}\\ \mathrm{cos}\frac{\lambda }{2}\end{array}\right)$

$|\psi 〉={c}_{+}|+,t〉{\text{e}}^{i{\Phi }_{+}\left(t\right)}+{c}_{-}|-,t〉{\text{e}}^{i{\Phi }_{-}\left(t\right)}$

$i\hslash \frac{\partial }{\partial t}\left(|+,t〉{\text{e}}^{i{\Phi }_{+}\left(t\right)}\right)=\stackrel{^}{H}\left(t\right)|+,t〉{\text{e}}^{i{\Phi }_{+}\left(t\right)}$

$\stackrel{^}{H}|+,t〉=\frac{\hslash \Omega }{2}\left(\begin{array}{c}\mathrm{cos}\theta \mathrm{cos}\frac{\lambda }{2}+{\text{e}}^{i\left(\gamma -\varphi \right)}\mathrm{sin}\theta \mathrm{sin}\frac{\lambda }{2}\\ {\text{e}}^{i\varphi }\mathrm{sin}\theta \mathrm{cos}\frac{\lambda }{2}-{\text{e}}^{i\gamma }\mathrm{cos}\theta \mathrm{sin}\frac{\lambda }{2}\end{array}\right)$

$\frac{\partial }{\partial t}|+,t〉=\left(\begin{array}{c}-\frac{\stackrel{˙}{\lambda }}{2}\mathrm{sin}\frac{\lambda }{2}\\ i\stackrel{˙}{\gamma }{\text{e}}^{i\gamma }\mathrm{sin}\frac{\lambda }{2}+\frac{\stackrel{˙}{\lambda }}{2}{\text{e}}^{i\gamma }\mathrm{cos}\frac{\lambda }{2}\end{array}\right)$

$\begin{array}{l}-{\stackrel{˙}{\Phi }}_{+}\mathrm{cos}\frac{\lambda }{2}-i\frac{\stackrel{˙}{\lambda }}{2}\mathrm{sin}\frac{\lambda }{2}=\frac{\Omega }{2}\left(\mathrm{cos}\theta \mathrm{cos}\frac{\lambda }{2}+{\text{e}}^{i\left(\gamma -\varphi \right)}\mathrm{sin}\theta \mathrm{sin}\frac{\lambda }{2}\right),\\ -{\stackrel{˙}{\Phi }}_{+}{\text{e}}^{i\gamma }\mathrm{sin}\frac{\lambda }{2}+i\left(i\stackrel{˙}{\gamma }{\text{e}}^{i\gamma }\mathrm{sin}\frac{\lambda }{2}+\frac{\stackrel{˙}{\lambda }}{2}{\text{e}}^{i\gamma }\mathrm{cos}\frac{\lambda }{2}\right)=\frac{\Omega }{2}\left({\text{e}}^{i\varphi }\mathrm{sin}\theta \mathrm{cos}\frac{\lambda }{2}-{\text{e}}^{i\gamma }\mathrm{cos}\theta \mathrm{sin}\frac{\lambda }{2}\right)\end{array}$

$\begin{array}{l}{\stackrel{˙}{\Phi }}_{+}=-\frac{\Omega }{2}\left[\mathrm{cos}\theta +\mathrm{cos}\left(\gamma -\varphi \right)\mathrm{sin}\theta \mathrm{tan}\frac{\lambda }{2}\right],\\ \stackrel{˙}{\lambda }=\Omega \mathrm{sin}\left(\varphi -\gamma \right)\mathrm{sin}\theta \end{array}$

$\begin{array}{l}-{\stackrel{˙}{\Phi }}_{+}-\stackrel{˙}{\gamma }+i\frac{\stackrel{˙}{\lambda }}{2}\mathrm{cot}\frac{\lambda }{2}\\ =\frac{\Omega }{2}\left[\mathrm{cos}\left(\varphi -\gamma \right)\mathrm{sin}\theta \mathrm{cot}\frac{\lambda }{2}-\mathrm{cos}\theta +i\mathrm{sin}\left(\varphi -\gamma \right)\mathrm{sin}\theta \mathrm{cot}\frac{\lambda }{2}\right]\end{array}$

${\stackrel{˙}{\Phi }}_{+}+\stackrel{˙}{\gamma }=\frac{\Omega }{2}\left[\mathrm{cos}\theta -\mathrm{cos}\left(\varphi -\gamma \right)\mathrm{sin}\theta \mathrm{cot}\frac{\lambda }{2}\right]$

$\begin{array}{c}\stackrel{˙}{\gamma }=\frac{\Omega }{2}\left[\mathrm{cos}\theta -\mathrm{cos}\left(\varphi -\gamma \right)\mathrm{sin}\theta \mathrm{cot}\frac{\lambda }{2}\right]-{\stackrel{˙}{\Phi }}_{+}\\ =\frac{\Omega }{2}\left[\mathrm{cos}\theta -\mathrm{cos}\left(\varphi -\gamma \right)\mathrm{sin}\theta \mathrm{cot}\frac{\lambda }{2}\right]+\frac{\Omega }{2}\left[\mathrm{cos}\theta +\mathrm{cos}\left(\gamma -\varphi \right)\mathrm{sin}\theta \mathrm{tan}\frac{\lambda }{2}\right]\\ =\Omega \left[\mathrm{cos}\theta -\mathrm{cos}\left(\varphi -\gamma \right)\mathrm{sin}\theta \mathrm{cot}\lambda \right]\end{array}$

$\mathrm{tan}\frac{\lambda }{2}=\frac{2{\mathrm{sin}}^{2}\frac{\lambda }{2}}{\mathrm{sin}\lambda }=\frac{1-\mathrm{cos}\lambda }{\mathrm{sin}\lambda }=\mathrm{sin}\lambda -\frac{\mathrm{cos}\lambda }{\mathrm{sin}\lambda }+\frac{{\mathrm{cos}}^{2}\lambda }{\mathrm{sin}\lambda }=\mathrm{sin}\lambda -\mathrm{cot}\lambda \left(1-\mathrm{cos}\lambda \right)$。那么相位的时间变化率最终可以化为

$\begin{array}{c}{\stackrel{˙}{\Phi }}_{+}=-\frac{\Omega }{2}\left\{\mathrm{cos}\theta +\mathrm{cos}\left(\gamma -\varphi \right)\mathrm{sin}\theta \left[\mathrm{sin}\lambda -\mathrm{cot}\lambda \left(1-\mathrm{cos}\lambda \right)\right]\right\}\\ =-\frac{\Omega }{2}\left\{\mathrm{cos}\lambda \mathrm{cos}\theta +\mathrm{sin}\lambda \mathrm{sin}\theta \mathrm{cos}\left(\gamma -\varphi \right)+\left[\mathrm{cos}\theta -\mathrm{sin}\theta \mathrm{cot}\lambda \mathrm{cos}\left(\varphi -\gamma \right)\right]\left(1-\mathrm{cos}\lambda \right)\right\}\\ =-\frac{1}{2}\left\{\Omega \left[\mathrm{cos}\lambda \mathrm{cos}\theta +\mathrm{sin}\lambda \mathrm{sin}\theta \mathrm{cos}\left(\gamma -\varphi \right)\right]+\stackrel{˙}{\gamma }\left(1-\mathrm{cos}\lambda \right)\right\}\end{array}$

$\begin{array}{c}〈+,t|\stackrel{^}{H}|+,t〉\\ =\left(\begin{array}{cc}\mathrm{cos}\frac{\lambda }{2}& {\text{e}}^{-i\gamma }\mathrm{sin}\frac{\lambda }{2}\end{array}\right)\frac{\hslash \Omega }{2}\left(\begin{array}{cc}\mathrm{cos}\theta & {\text{e}}^{-i\varphi }\mathrm{sin}\theta \\ {\text{e}}^{+i\varphi }\mathrm{sin}\theta & -\mathrm{cos}\theta \end{array}\right)\left(\begin{array}{c}\mathrm{cos}\frac{\lambda }{2}\\ {\text{e}}^{+i\gamma }\mathrm{sin}\frac{\lambda }{2}\end{array}\right)\\ =\frac{\hslash \Omega }{2}\left[\mathrm{cos}\lambda \mathrm{cos}\theta +\mathrm{sin}\lambda \mathrm{sin}\theta \mathrm{cos}\left(\gamma -\varphi \right)\right]\end{array}$

$\begin{array}{c}〈+,t|i\hslash \frac{\partial }{\partial t}|+,t〉\\ =i\hslash \left(\begin{array}{cc}\mathrm{cos}\frac{\lambda }{2}& {\text{e}}^{-i\gamma }\mathrm{sin}\frac{\lambda }{2}\end{array}\right)\left(\begin{array}{c}-\frac{\stackrel{˙}{\lambda }}{2}\mathrm{sin}\frac{\lambda }{2}\\ i\stackrel{˙}{\gamma }{\text{e}}^{i\gamma }\mathrm{sin}\frac{\lambda }{2}+\frac{\stackrel{˙}{\lambda }}{2}{\text{e}}^{i\gamma }\mathrm{cos}\frac{\lambda }{2}\end{array}\right)\\ =i\hslash \left[\mathrm{cos}\frac{\lambda }{2}\left(-\frac{\stackrel{˙}{\lambda }}{2}\mathrm{sin}\frac{\lambda }{2}\right)+{\text{e}}^{-i\gamma }\mathrm{sin}\frac{\lambda }{2}\left(i\stackrel{˙}{\gamma }{\text{e}}^{i\gamma }\mathrm{sin}\frac{\lambda }{2}+\frac{\stackrel{˙}{\lambda }}{2}{\text{e}}^{i\gamma }\mathrm{cos}\frac{\lambda }{2}\right)\right]\\ =-\hslash \stackrel{˙}{\gamma }{\mathrm{sin}}^{2}\frac{\lambda }{2}=-\hslash \stackrel{˙}{\gamma }\frac{1-\mathrm{cos}\lambda }{2}\end{array}$

$|1,t〉=\left(\begin{array}{c}\mathrm{cos}\frac{\lambda }{2}\\ {\text{e}}^{+i\gamma }\mathrm{sin}\frac{\lambda }{2}\\ 0\end{array}\right)$$|2,t〉=\left(\begin{array}{c}-{\text{e}}^{-i\tau }\mathrm{sin}\frac{\sigma }{2}\left(-{\text{e}}^{-i\gamma }\mathrm{sin}\frac{\lambda }{2}\right)\\ -{\text{e}}^{-i\tau }\mathrm{sin}\frac{\sigma }{2}\mathrm{cos}\frac{\lambda }{2}\\ \mathrm{cos}\frac{\sigma }{2}\end{array}\right)$$|3,t〉=\left(\begin{array}{c}\mathrm{cos}\frac{\sigma }{2}\left(-{\text{e}}^{-i\gamma }\mathrm{sin}\frac{\lambda }{2}\right)\\ \mathrm{cos}\frac{\sigma }{2}\mathrm{cos}\frac{\lambda }{2}\\ {\text{e}}^{i\tau }\mathrm{sin}\frac{\sigma }{2}\end{array}\right)$

6. 不变量理论和么正变换的物理含义

$\frac{\partial I}{\partial t}+\frac{1}{i\hslash }\left[I,H\right]=0$ 类比于度规的metricity条件 ${\nabla }_{\lambda }{g}^{\mu \nu }=0$ 的展开 ${\partial }_{\lambda }{g}^{\mu \nu }+{\Gamma }^{\mu }{}_{\lambda \sigma }{g}^{\sigma \nu }+{\Gamma }^{\nu }{}_{\lambda \sigma }{g}^{\mu \sigma }=0$。从这个角

${H}_{V}={V}^{+}HV-{V}^{+}i\hslash \frac{\partial }{\partial t}V$，可以看出 ${H}_{V}$ 类比于自旋仿射联络(洛伦兹联络) ${\omega }_{\mu }{}^{pq}=i{e}^{p}{}_{\lambda }{\nabla }_{\mu }{e}^{q\lambda }$，它的具体展开式子是 $i{e}^{p}{}_{\lambda }\left({\partial }_{\mu }{e}^{q\lambda }+{\Gamma }^{\lambda }{}_{\mu \sigma }{e}^{q\sigma }\right)=i{e}^{p}{}_{\lambda }{\partial }_{\mu }{e}^{q\lambda }+i{e}^{p}{}_{\lambda }{\Gamma }^{\lambda }{}_{\mu \sigma }{e}^{q\sigma }$。(iv) ${H}_{V}={V}^{+}HV-{V}^{+}i\hslash \frac{\partial }{\partial t}V$ 可以化为

${H}_{V}{V}^{+}={V}^{+}H+i\hslash \frac{\partial }{\partial t}{V}^{+}$$i\hslash \frac{\partial }{\partial t}{V}^{+}+{V}^{+}H-{H}_{V}{V}^{+}=0$，此式其实类比于标架场(vierbein) ${e}^{p}{}_{\mu }$ 的协变导数为

${|\Psi \left(t\right)〉}_{+}=\left(\begin{array}{c}\mathrm{cos}\frac{\lambda \left(t\right)}{2}\\ \mathrm{sin}\frac{\lambda \left(t\right)}{2}{\text{e}}^{i\gamma \left(t\right)}\end{array}\right)$

${|\Psi \left(t\right)〉}_{-}=\left(\begin{array}{c}-\mathrm{sin}\frac{\lambda \left(t\right)}{2}{\text{e}}^{-i\gamma \left(t\right)}\\ \mathrm{cos}\frac{\lambda \left(t\right)}{2}\end{array}\right)$

$\begin{array}{l}{|\Psi \left(t\right)〉}_{+}{}_{+}〈\Psi \left(t\right)|+{|\Psi \left(t\right)〉}_{-}{}_{-}〈\Psi \left(t\right)|\\ =\left(\begin{array}{c}\mathrm{cos}\frac{\lambda \left(t\right)}{2}\\ \mathrm{sin}\frac{\lambda \left(t\right)}{2}{\text{e}}^{i\gamma \left(t\right)}\end{array}\right)\left(\begin{array}{cc}\mathrm{cos}\frac{\lambda \left(t\right)}{2}& \mathrm{sin}\frac{\lambda \left(t\right)}{2}{\text{e}}^{-i\gamma \left(t\right)}\end{array}\right)\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{ }\text{ }+\left(\begin{array}{c}-\mathrm{sin}\frac{\lambda \left(t\right)}{2}{\text{e}}^{-i\gamma \left(t\right)}\\ \mathrm{cos}\frac{\lambda \left(t\right)}{2}\end{array}\right)\left(\begin{array}{cc}-\mathrm{sin}\frac{\lambda \left(t\right)}{2}{\text{e}}^{i\gamma \left(t\right)}& \mathrm{cos}\frac{\lambda \left(t\right)}{2}\end{array}\right)=\left(\begin{array}{cc}1& 0\\ 0& 1\end{array}\right)\end{array}$

$\begin{array}{c}{|\Psi \left(t\right)〉}_{+}{}_{+}〈\Psi \left(t\right)|=\left(\begin{array}{c}\mathrm{cos}\frac{\lambda \left(t\right)}{2}\\ \mathrm{sin}\frac{\lambda \left(t\right)}{2}{\text{e}}^{i\gamma \left(t\right)}\end{array}\right)\left(\begin{array}{cc}\mathrm{cos}\frac{\lambda \left(t\right)}{2}& \mathrm{sin}\frac{\lambda \left(t\right)}{2}{\text{e}}^{-i\gamma \left(t\right)}\end{array}\right)\\ =\left(\begin{array}{cc}{\mathrm{cos}}^{2}\frac{\lambda \left(t\right)}{2}& \mathrm{cos}\frac{\lambda \left(t\right)}{2}\mathrm{sin}\frac{\lambda \left(t\right)}{2}{\text{e}}^{-i\gamma \left(t\right)}\\ \mathrm{cos}\frac{\lambda \left(t\right)}{2}\mathrm{sin}\frac{\lambda \left(t\right)}{2}{\text{e}}^{i\gamma \left(t\right)}& {\mathrm{sin}}^{2}\frac{\lambda \left(t\right)}{2}\end{array}\right)\\ =\frac{1}{2}\left(\begin{array}{cc}1+\mathrm{cos}\lambda & {\text{e}}^{-i\gamma }\mathrm{sin}\lambda \\ {\text{e}}^{i\gamma }\mathrm{sin}\lambda & 1-\mathrm{cos}\lambda \end{array}\right)\end{array}$

$\begin{array}{c}I\left(t\right)=l\left(t\right)\cdot J=\frac{1}{2}\mathrm{sin}\lambda \left(t\right)\mathrm{exp}\left[-i\gamma \left(t\right)\right]{J}_{+}+\frac{1}{2}\mathrm{sin}\lambda \left(t\right)\mathrm{exp}\left[i\gamma \left(t\right)\right]{J}_{-}+\mathrm{cos}\lambda \left(t\right){J}_{3}\\ =\frac{1}{2}\left(\begin{array}{cc}\mathrm{cos}\lambda & {\text{e}}^{-i\gamma }\mathrm{sin}\lambda \\ {\text{e}}^{i\gamma }\mathrm{sin}\lambda & -\mathrm{cos}\lambda \end{array}\right)\end{array}$

$\begin{array}{c}{|\Psi \left(t\right)〉}_{-}{}_{-}〈\Psi \left(t\right)|=\left(\begin{array}{c}-\mathrm{sin}\frac{\lambda \left(t\right)}{2}{\text{e}}^{-i\gamma \left(t\right)}\\ \mathrm{cos}\frac{\lambda \left(t\right)}{2}\end{array}\right)\left(\begin{array}{cc}-\mathrm{sin}\frac{\lambda \left(t\right)}{2}{\text{e}}^{i\gamma \left(t\right)}& \mathrm{cos}\frac{\lambda \left(t\right)}{2}\end{array}\right)\\ =\left(\begin{array}{cc}{\mathrm{sin}}^{2}\frac{\lambda \left(t\right)}{2}& -{\text{e}}^{-i\gamma \left(t\right)}\mathrm{sin}\frac{\lambda \left(t\right)}{2}\mathrm{cos}\frac{\lambda \left(t\right)}{2}\\ -{\text{e}}^{i\gamma \left(t\right)}\mathrm{sin}\frac{\lambda \left(t\right)}{2}\mathrm{cos}\frac{\lambda \left(t\right)}{2}& {\mathrm{cos}}^{2}\frac{\lambda \left(t\right)}{2}\end{array}\right)\\ =\frac{1}{2}\left(\begin{array}{cc}1-\mathrm{cos}\lambda & -{\text{e}}^{-i\gamma }\mathrm{sin}\lambda \\ -{\text{e}}^{i\gamma }\mathrm{sin}\lambda & 1+\mathrm{cos}\lambda \end{array}\right)\end{array}$

${e}^{aN}=\left(\begin{array}{cc}{|\Psi \left(t\right)〉}_{+}& {|\Psi \left(t\right)〉}_{-}\end{array}\right)$${\vartheta }^{Na}=\left(\begin{array}{c}{}_{+}〈\Psi \left(t\right)|\\ {}_{-}〈\Psi \left(t\right)|\end{array}\right)$

${e}^{aN}=\left(\begin{array}{cc}\mathrm{cos}\frac{\lambda }{2}& -{\text{e}}^{-i\gamma }\mathrm{sin}\frac{\lambda }{2}\\ {\text{e}}^{i\gamma }\mathrm{sin}\frac{\lambda }{2}& \mathrm{cos}\frac{\lambda }{2}\end{array}\right)$${\vartheta }^{Na}=\left(\begin{array}{cc}\mathrm{cos}\frac{\lambda }{2}& {\text{e}}^{-i\gamma }\mathrm{sin}\frac{\lambda }{2}\\ -{\text{e}}^{i\gamma }\mathrm{sin}\frac{\lambda }{2}& \mathrm{cos}\frac{\lambda }{2}\end{array}\right)$

$\begin{array}{c}\left[{g}^{MN}\right]=\left[{\vartheta }^{M}{}_{a}{e}^{aN}\right]=\left(\begin{array}{cc}\mathrm{cos}\frac{\lambda }{2}& {\text{e}}^{-i\gamma }\mathrm{sin}\frac{\lambda }{2}\\ -{\text{e}}^{i\gamma }\mathrm{sin}\frac{\lambda }{2}& \mathrm{cos}\frac{\lambda }{2}\end{array}\right)\left(\begin{array}{cc}\mathrm{cos}\frac{\lambda }{2}& -{\text{e}}^{-i\gamma }\mathrm{sin}\frac{\lambda }{2}\\ {\text{e}}^{i\gamma }\mathrm{sin}\frac{\lambda }{2}& \mathrm{cos}\frac{\lambda }{2}\end{array}\right)\\ =\left(\begin{array}{cc}1& 0\\ 0& 1\end{array}\right)\end{array}$

$\begin{array}{c}\left[{\eta }^{ab}\right]=\left[{e}^{aN}{\vartheta }_{N}{}^{b}\right]=\left[{e}^{aN}{g}_{NM}{\vartheta }^{Mb}\right]\\ =\left(\begin{array}{cc}\mathrm{cos}\frac{\lambda }{2}& -{\text{e}}^{-i\gamma }\mathrm{sin}\frac{\lambda }{2}\\ {\text{e}}^{i\gamma }\mathrm{sin}\frac{\lambda }{2}& \mathrm{cos}\frac{\lambda }{2}\end{array}\right)\left(\begin{array}{cc}1& 0\\ 0& 1\end{array}\right)\left(\begin{array}{cc}\mathrm{cos}\frac{\lambda }{2}& {\text{e}}^{-i\gamma }\mathrm{sin}\frac{\lambda }{2}\\ -{\text{e}}^{i\gamma }\mathrm{sin}\frac{\lambda }{2}& \mathrm{cos}\frac{\lambda }{2}\end{array}\right)=\left(\begin{array}{cc}1& 0\\ 0& 1\end{array}\right)\end{array}$

${I}^{a}{}_{b}{e}^{bN}=\sigma {e}^{aN}$${I}^{aN}=\sigma {e}^{aN}$

$I\left(t\right)=l\left(t\right)\cdot J=\frac{1}{2}\left(\begin{array}{cc}\mathrm{cos}\lambda & {\text{e}}^{-i\gamma }\mathrm{sin}\lambda \\ {\text{e}}^{i\gamma }\mathrm{sin}\lambda & -\mathrm{cos}\lambda \end{array}\right)$${e}^{aN}=\left(\begin{array}{cc}\mathrm{cos}\frac{\lambda }{2}& -{\text{e}}^{-i\gamma }\mathrm{sin}\frac{\lambda }{2}\\ {\text{e}}^{i\gamma }\mathrm{sin}\frac{\lambda }{2}& \mathrm{cos}\frac{\lambda }{2}\end{array}\right)$

$\begin{array}{l}I\left(\begin{array}{cc}{|\Psi \left(t\right)〉}_{+}& {|\Psi \left(t\right)〉}_{-}\end{array}\right)\\ =\frac{1}{2}\left(\begin{array}{cc}\mathrm{cos}\lambda & {\text{e}}^{-i\gamma }\mathrm{sin}\lambda \\ {\text{e}}^{i\gamma }\mathrm{sin}\lambda & -\mathrm{cos}\lambda \end{array}\right)\left(\begin{array}{cc}\mathrm{cos}\frac{\lambda }{2}& -{\text{e}}^{-i\gamma }\mathrm{sin}\frac{\lambda }{2}\\ {\text{e}}^{i\gamma }\mathrm{sin}\frac{\lambda }{2}& \mathrm{cos}\frac{\lambda }{2}\end{array}\right)\\ =\frac{1}{2}\left(\begin{array}{cc}\mathrm{cos}\lambda \mathrm{cos}\frac{\lambda }{2}+\mathrm{sin}\lambda \mathrm{sin}\frac{\lambda }{2}& {\text{e}}^{-i\gamma }\left(-\mathrm{cos}\lambda \mathrm{sin}\frac{\lambda }{2}+\mathrm{sin}\lambda \mathrm{cos}\frac{\lambda }{2}\right)\\ {\text{e}}^{i\gamma }\left(\mathrm{sin}\lambda \mathrm{cos}\frac{\lambda }{2}-\mathrm{cos}\lambda \mathrm{sin}\frac{\lambda }{2}\right)& -\left(\mathrm{sin}\lambda \mathrm{sin}\frac{\lambda }{2}+\mathrm{cos}\lambda \mathrm{cos}\frac{\lambda }{2}\right)\end{array}\right)\\ =\frac{1}{2}\left(\begin{array}{cc}\mathrm{cos}\frac{\lambda }{2}& {\text{e}}^{-i\gamma }\mathrm{sin}\frac{\lambda }{2}\\ {\text{e}}^{i\gamma }\mathrm{sin}\frac{\lambda }{2}& -\mathrm{cos}\frac{\lambda }{2}\end{array}\right)\end{array}$

$\begin{array}{c}I\left(\begin{array}{cc}{|\Psi \left(t\right)〉}_{+}& {|\Psi \left(t\right)〉}_{-}\end{array}\right)=\left(\begin{array}{cc}I{|\Psi \left(t\right)〉}_{+}& I{|\Psi \left(t\right)〉}_{-}\end{array}\right)\\ =\left(\begin{array}{cc}\frac{1}{2}{|\Psi \left(t\right)〉}_{+}& -\frac{1}{2}{|\Psi \left(t\right)〉}_{-}\end{array}\right)\\ =\frac{1}{2}\left(\begin{array}{cc}{|\Psi \left(t\right)〉}_{+}& -{|\Psi \left(t\right)〉}_{-}\end{array}\right)\end{array}$

7. 有关几何相位的讨论

1) 所谓绝热(绝热近似、绝热条件)，对一个二态体系而言，就是指它的哈密顿量算符内的演化参数如 $\omega$ (哈密顿量在参数空间内的进动频率)远远小于 ${\omega }_{0}$ (二态跃迁频率) [9] [10] [11]，那么我们就有 $\lambda -\theta \to 0$。所以，在绝热情形的例子中，量子系统的哈密顿量算符 $H\left(t\right)$ 与Lewis-Riesenfeld不变量算符 $I\left(t\right)$ [24] 是十分接近的、几乎相等的(因此我们可以用量子系统的哈密顿量算符 $H\left(t\right)$ 代替不变量算符 $I\left(t\right)$，也就是说， $H\left(t\right)$ 可以近似允许有瞬时本征态，那么自然Lewis-Riesenfeld不变量算符 $I\left(t\right)$ 也就不再需要了) [26]。但是，对于非绝热情形，哈密顿量 $H\left(t\right)$ 与不变量算符 $I\left(t\right)$ 相差太大 [26]，不变量算符 $I\left(t\right)$ 有本征态，但哈密顿量算符 $H\left(t\right)$ 没有(瞬时)本征态(即认为“哈密顿量 $H\left(t\right)$ 有瞬时本征态”的观点是错误的，这是因为如果有瞬时本征态，那么这就与含时Schrödinger方程相悖) [9] [10] [11] [26] [27] [28]。还有一种情形也值得考虑：那就是哈密顿量中耦合项比较小，即 $\mathrm{sin}\theta$ 接近于零。此时从不变量辅助方程可以看出， $\stackrel{˙}{\lambda }\to 0$$\stackrel{˙}{\gamma }\to {\omega }_{0}\mathrm{cos}\theta$

$\begin{array}{c}{V}^{+}HV-{V}^{+}i\frac{\partial }{\partial t}V=\left[{\omega }_{0}\left(\mathrm{cos}\theta \mathrm{cos}\lambda +\mathrm{sin}\theta \mathrm{sin}\lambda \mathrm{cos}\left(\phi -\gamma \right)\right)+\stackrel{˙}{\gamma }\left(1-\mathrm{cos}\lambda \right)\right]\frac{{\sigma }_{3}}{2}\\ \to \left[{\omega }_{0}\mathrm{cos}\theta \mathrm{cos}\lambda +{\omega }_{0}\mathrm{cos}\theta \left(1-\mathrm{cos}\lambda \right)\right]\frac{{\sigma }_{3}}{2}={\omega }_{0}\mathrm{cos}\theta \frac{{\sigma }_{3}}{2}\end{array}$

2) 下面讨论一下含时Schrödinger方程的解的幺正变换(规范变换)：

$i\frac{\partial }{\partial t}\left[\mathrm{exp}\left(\frac{1}{i}\phi \left(t\right)\right)|\psi \left(t\right)〉\right]=H\left(t\right)\left[\mathrm{exp}\left(\frac{1}{i}\phi \left(t\right)\right)|\psi \left(t\right)〉\right]$

$\begin{array}{l}i\frac{\partial }{\partial t}\left[\mathrm{exp}\left(\frac{1}{i}\stackrel{˜}{\phi }\left(t\right)\right)|\Psi \left(t\right)〉\right]=i\frac{\partial }{\partial t}\left[\mathrm{exp}\left(\frac{1}{i}\left(\stackrel{˜}{\phi }\left(t\right)-\phi \left(t\right)\right)\right)U\underset{_}{\mathrm{exp}\left(\frac{1}{i}\phi \left(t\right)\right)|\psi \left(t\right)〉}\right]\\ =i\left\{\frac{\partial }{\partial t}\left[\mathrm{exp}\left(\frac{1}{i}\left(\stackrel{˜}{\phi }\left(t\right)-\phi \left(t\right)\right)\right)U\right]\right\}\mathrm{exp}\left(\frac{1}{i}\phi \left(t\right)\right)|\psi \left(t\right)〉+\mathrm{exp}\left(\frac{1}{i}\left(\stackrel{˜}{\phi }-\phi \left(t\right)\right)\right)Ui\frac{\partial }{\partial t}\left[\underset{_}{\mathrm{exp}\left(\frac{1}{i}\phi \left(t\right)\right)|\psi \left(t\right)〉}\right]\\ =i\left\{\frac{\partial }{\partial t}\left[\mathrm{exp}\left(\frac{1}{i}\left(\stackrel{˜}{\phi }\left(t\right)-\phi \left(t\right)\right)\right)\right]\right\}\mathrm{exp}\left(\frac{1}{i}\phi \left(t\right)\right)U|\psi \left(t\right)〉+\mathrm{exp}\left(\frac{1}{i}\stackrel{˜}{\phi }\left(t\right)\right)i\frac{\partial U}{\partial t}{U}^{-1}\left(U|\psi \left(t\right)〉\right)\\ +\mathrm{exp}\left(\frac{1}{i}\left(\stackrel{˜}{\phi }\left(t\right)-\phi \left(t\right)\right)\right)UH\mathrm{exp}\left(\frac{1}{i}\phi \left(t\right)\right)|\psi \left(t\right)〉\end{array}$

$\begin{array}{l}i\frac{\partial }{\partial t}\left[\mathrm{exp}\left(\frac{1}{i}\stackrel{˜}{\phi }\left(t\right)\right)|\Psi \left(t\right)〉\right]\\ =i\left\{\frac{\partial }{\partial t}\left[\mathrm{exp}\left(\frac{1}{i}\left(\stackrel{˜}{\phi }\left(t\right)-\phi \left(t\right)\right)\right)\right]\right\}\mathrm{exp}\left(\frac{1}{i}\phi \left(t\right)\right)U|\psi \left(t\right)〉+\mathrm{exp}\left(\frac{1}{i}\stackrel{˜}{\phi }\left(t\right)\right)i\frac{\partial U}{\partial t}{U}^{-1}\left(U|\psi \left(t\right)〉\right)\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}+\mathrm{exp}\left(\frac{1}{i}\left(\stackrel{˜}{\phi }\left(t\right)-\phi \left(t\right)\right)\right)\mathrm{exp}\left(\frac{1}{i}\phi \left(t\right)\right)UH{U}^{-1}\left(U|\psi \left(t\right)〉\right)\\ =i\left\{\frac{\partial }{\partial t}\left[\mathrm{exp}\left(\frac{1}{i}\left(\stackrel{˜}{\phi }\left(t\right)-\phi \left(t\right)\right)\right)\right]\right\}\mathrm{exp}\left(\frac{1}{i}\phi \left(t\right)\right)U|\psi \left(t\right)〉+i\frac{\partial U}{\partial t}{U}^{-1}\left[\mathrm{exp}\left(\frac{1}{i}\stackrel{˜}{\phi }\left(t\right)\right)|\Psi \left(t\right)〉\right]\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}+UH{U}^{-1}\left[\mathrm{exp}\left(\frac{1}{i}\stackrel{˜}{\phi }\left(t\right)\right)|\Psi \left(t\right)〉\right]\end{array}$

${H}_{U}=UH{U}^{-1}+i\frac{\partial U}{\partial t}{U}^{-1}$$\frac{\partial }{\partial t}\left[\mathrm{exp}\left(\frac{1}{i}\left(\stackrel{˜}{\phi }\left(t\right)-\phi \left(t\right)\right)\right)\right]=0$

3) 下面我们来研究SU(2)含时三生成元体系的不变量算符与哈密顿量算符的数学关系(相关的性质可能在一些文献内已经有隐现或交代 [2] [24] [26] [27] [28] )，这可以让读者进一步理解不变量算符和哈密顿量算符之间的依赖关系。Lewis-Riesenfeld不变量算符和量子系统的哈密顿量算符的生成元系数各自可以写为三维空间的单位矢量 $l\left(t\right)$$h\left(t\right)$ 形式，即

$l\left(t\right)=\left[\mathrm{sin}\lambda \left(t\right)\mathrm{cos}\gamma \left(t\right),\mathrm{sin}\lambda \left(t\right)\mathrm{sin}\gamma \left(t\right),\mathrm{cos}\lambda \left(t\right)\right]$

$h\left(t\right)=\left[\mathrm{sin}\theta \left(t\right)\mathrm{cos}\phi \left(t\right),\mathrm{sin}\theta \left(t\right)\mathrm{sin}\phi \left(t\right),\mathrm{cos}\theta \left(t\right)\right]$

$\begin{array}{c}h\cdot l=\mathrm{sin}\theta \mathrm{cos}\phi \mathrm{sin}\lambda \mathrm{cos}\gamma +\mathrm{sin}\theta \mathrm{sin}\phi \mathrm{sin}\lambda \mathrm{sin}\gamma +\mathrm{cos}\theta \mathrm{cos}\lambda \\ =\mathrm{cos}\theta \mathrm{cos}\lambda +\mathrm{sin}\theta \mathrm{sin}\lambda \left(\mathrm{cos}\phi \mathrm{cos}\gamma +\mathrm{sin}\phi \mathrm{sin}\gamma \right)\\ =\mathrm{cos}\theta \mathrm{cos}\lambda +\mathrm{sin}\theta \mathrm{sin}\lambda \mathrm{cos}\left(\phi -\gamma \right)\end{array}$

${V}^{+}HV-{V}^{+}i\frac{\partial }{\partial t}V=\left\{{\omega }_{0}\left(t\right)\left[\mathrm{cos}\theta \mathrm{cos}\lambda +\mathrm{sin}\theta \mathrm{sin}\lambda \mathrm{cos}\left(\phi -\gamma \right)\right]+\stackrel{˙}{\gamma }\left(1-\mathrm{cos}\lambda \right)\right\}\frac{{\sigma }_{3}}{2}$

4) 什么样的量子系统含有几何相位呢？当然，含时系统含有几何相位。但并非所有含时系统都含有几何相位，根据分析，必须要排除两种情形：(1) 不同时刻的哈密顿量对易的系统。这样的系统其哈密顿量只能是这样的形式： $H\left(t\right)={\omega }_{0}\left(t\right)\left[\mathrm{sin}\theta \mathrm{cos}\phi {J}_{1}+\mathrm{sin}\theta \mathrm{sin}\phi {J}_{2}+\mathrm{cos}\theta {J}_{3}\right]$，其中参量 $\theta$$\phi$ 不含时，仅仅 ${\omega }_{0}\left(t\right)$ 含时。从Lewis-Riesenfeld不变量辅助方程可以看出， $\stackrel{˙}{\lambda }={\omega }_{0}\left(t\right)\mathrm{sin}\theta \mathrm{sin}\left(\phi -\gamma \right)$

$\stackrel{˙}{\gamma }={\omega }_{0}\left(t\right)\left[\mathrm{cos}\theta -\mathrm{sin}\theta \mathrm{cot}\lambda \mathrm{cos}\left(\phi -\gamma \right)\right]$，参量 $\theta$$\phi$ 不含时，那么 $\lambda$$\gamma$ 也为常数( $\lambda =\theta$$\gamma =\phi$ )，这样几何相位( $\stackrel{˙}{\gamma }\left(1-\mathrm{cos}\lambda \right)$ 的时间积分)为零；(2) 哈密顿量中的非对角项(与 ${J}_{1}$有关的项)含有时谐振荡因子，其可以通过幺正变换，将时谐振荡因子变换掉(这在上面已经有论证)。此外，为了几何相位是可测相位，还要求哈密顿量(与不变量)满足循回条件( $H\left(0\right)=H\left(T\right)$$I\left(0\right)=I\left(T\right)$ ) [2] [26]。在绝热条件下， $I\left(0\right)=I\left(T\right)$$H\left(0\right)=H\left(T\right)$ 是等价的。但在非绝热条件下， $I\left(0\right)=I\left(T\right)$$H\left(0\right)=H\left(T\right)$ 更基本、更重要 [2] [26]。这一点从与不变量 [24] 有关的幺正变换方法 [26] 得到的新哈密顿量(可以直接用于计算几何相位)

${V}^{+}HV-{V}^{+}i\frac{\partial }{\partial t}V=\left\{{\omega }_{0}\left(t\right)\left[\mathrm{cos}\theta \mathrm{cos}\lambda +\mathrm{sin}\theta \mathrm{sin}\lambda \mathrm{cos}\left(\phi -\gamma \right)\right]+\stackrel{˙}{\gamma }\left(1-\mathrm{cos}\lambda \right)\right\}\frac{{\sigma }_{3}}{2}$

8. 本专题的衍伸意义

${\omega }_{\mu }{}^{ab}=i{e}^{aN}{\partial }_{\mu }{\vartheta }_{N}{}^{b}$ 的类比，我们可以知道 $-i\hslash {\stackrel{^}{V}}^{+}\frac{\partial }{\partial t}\stackrel{^}{V}$ 中的么正变换 $\stackrel{^}{V}$ 就是一种“标架场”。引力理论中

${e}_{p}{}^{\lambda }\left(\left[{D}_{\mu },{D}_{\nu }\right]{\varphi }^{p}\right)=-i{e}_{p}{}^{\lambda }{\Omega }_{\mu \nu }{{}^{p}}_{q}{\varphi }^{q}$，其中左边为 ${e}_{p}{}^{\lambda }\left(\left[{D}_{\mu },{D}_{\nu }\right]{\varphi }^{p}\right)=\left[{\nabla }_{\mu },{\nabla }_{\nu }\right]{\varphi }^{\lambda }={R}^{\lambda }{}_{\sigma \mu \nu }{\varphi }^{\sigma }$ ( ${R}^{\lambda }{}_{\sigma \mu \nu }$ 为黎曼曲率张量)。将以上两式右边作比较，我们就得到了自旋联络规范场张量 ${\Omega }_{\mu \nu }{{}^{p}}_{q}$ 与黎曼曲率张量 ${R}^{\lambda }{}_{\sigma \mu \nu }$ 之间的关系： $-i{e}_{p}{}^{\lambda }{\Omega }_{\mu \nu }{{}^{p}}_{q}{e}^{q}{}_{\sigma }={R}^{\lambda }{}_{\sigma \mu \nu }$。这一关系颇让人有所启发：由 ${D}_{\mu }{e}_{p}{}^{\lambda }={\nabla }_{\mu }{e}_{p}{}^{\lambda }-i{\omega }_{\mu p}{}^{q}{e}_{q}{}^{\lambda }=0$，我们可以得到自旋联络 ${\omega }_{\mu p}{}^{q}=i{e}_{p}{}^{\tau }{\nabla }_{\mu }{e}^{q}{}_{\tau }$，但这里要注意： ${\nabla }_{\mu }$ 是Levi-Civita联络协变导数算符。如果假设Levi-Civita联络为零(要么是全局为零，即恒为零；要么局域为零，即只在局域惯性系内为零)，那么上面自旋联络将退化为 ${\omega }_{\mu p}{}^{q}=i{e}_{p}{}^{\tau }{\partial }_{\mu }{e}^{q}{}_{\tau }$ 以及 ${D}_{\mu }{e}_{p}{}^{\lambda }={\partial }_{\mu }{e}_{p}{}^{\lambda }-i{\omega }_{\mu p}{}^{q}{e}_{q}{}^{\lambda }=0$。但是，这样一来，由 $\left[{D}_{\mu },{D}_{\nu }\right]{\varphi }^{p}=-i{\Omega }_{\mu \nu }{{}^{p}}_{q}{\varphi }^{q}$ 仍旧可以得到正确的自旋联络规范场张量 ${\Omega }_{\mu \nu }{{}^{p}}_{q}={\partial }_{\mu }{\omega }_{\nu }{{}^{p}}_{q}-{\partial }_{\nu }{\omega }_{\mu }{{}^{p}}_{q}-i{\left[{\omega }_{\mu },{\omega }_{\nu }\right]}^{p}{}_{q}$，似乎当我们假设Levi-Civita联络为零，并不导致麻烦。其实不然，如果Levi-Civita联络全局为零，那么黎曼曲率张量 ${R}^{\lambda }{}_{\sigma \mu \nu }$ 恒为零，这样一来上面的关系 $-i{e}_{p}{}^{\lambda }{\Omega }_{\mu \nu }{{}^{p}}_{q}{e}^{q}{}_{\sigma }={R}^{\lambda }{}_{\sigma \mu \nu }$ 就不再成立(左边非零，右边为零)，导致矛盾。那么问题出在哪里呢？原来只要存在自旋联络规范场张量 ${\Omega }_{\mu \nu }{{}^{p}}_{q}$，黎曼曲率张量也必须存在。虽然可以假设Levi-Civita联络局域为零，即只在局域惯性系内为零，但是Levi-Civita联络的导数必不为零(对应于潮汐力即引力落差必然存在)。例如，在 ${\Omega }_{\mu \nu }{{}^{p}}_{q}$ 内，有 ${\partial }_{\mu }{\omega }_{\nu }{{}^{p}}_{q}-{\partial }_{\nu }{\omega }_{\mu }{{}^{p}}_{q}$，在它里面，自旋联络携带有Levi-Civita联络，即使它局域为零，但是其导数却不为零，最终要求黎曼曲率张量也必须存在。如此说来，一旦存在自旋联络或者Yang-Mills场(Yang-Mills场是高维Lorentz转动群规范场)，其内黎曼曲率张量就为非零，如高维空间(也即Yang-Mills规范群空间)必须是弯曲的。所以，最终要求自旋联络(Lorentz转动对称性联

$\Gamma$ 被隐去了，其实它是可以显示出来的。证明如下：我们从Schrödinger方程 $\stackrel{^}{H}|\Psi 〉=i\hslash \frac{\partial }{\partial t}|\Psi 〉$ 出发，将其化为 ${V}^{+}\stackrel{^}{H}\left(V{V}^{+}|\Psi 〉\right)={V}^{+}i\hslash \frac{\partial }{\partial t}\left(V{V}^{+}|\Psi 〉\right)$。再展开为

${V}^{+}\stackrel{^}{H}V\left({V}^{+}|\Psi 〉\right)=i\hslash \frac{\partial }{\partial t}\left({V}^{+}|\Psi 〉\right)+{V}^{+}i\hslash \frac{\partial V}{\partial t}\left({V}^{+}|\Psi 〉\right)$

$\left({V}^{+}\stackrel{^}{H}V-{V}^{+}i\hslash \frac{\partial V}{\partial t}\right)\left({V}^{+}|\Psi 〉\right)=i\hslash \frac{\partial }{\partial t}\left({V}^{+}|\Psi 〉\right)$

$\frac{\partial }{\partial t}\left(V{V}^{+}|\Psi 〉\right)=\frac{\partial V}{\partial t}\left({V}^{+}|\Psi 〉\right)+V\frac{\partial }{\partial t}\left({V}^{+}|\Psi 〉\right)$，但是实际上此式也可以写为

$\begin{array}{c}\frac{\partial }{\partial t}\left(V{V}^{+}|\Psi 〉\right)=\left(\frac{\partial }{\partial t}V+\Gamma V\right)\left({V}^{+}|\Psi 〉\right)+V\left[\frac{\partial }{\partial t}\left({V}^{+}|\Psi 〉\right)-{V}^{+}\Gamma |\Psi 〉\right]\\ =\left({D}_{t}V\right)\left({V}^{+}|\Psi 〉\right)+V{D}_{t}\left({V}^{+}|\Psi 〉\right)\end{array}$

$\left({V}^{+}\stackrel{^}{H}V-{V}^{+}i\hslash {D}_{t}V\right)\left({V}^{+}|\Psi 〉\right)=i\hslash {D}_{t}\left({V}^{+}|\Psi 〉\right)$

9. 结论

 [1] Aharonov, Y. and Bohm, D. (1959) Significance of Electromagnetic Potentials in the Quantum Theory. Physical Review, 115, 485-491. https://doi.org/10.1103/PhysRev.115.485 [2] 李华钟. 简单物理系统的整体性: 贝里相位及其他[M]. 上海: 上海科学技术出版社, 1998: 第3, 6, 10章. [3] Dirac, P.A.M. (1931) Quantised Singularities in the Electromagnetic Field. Proceedings of the Royal Society of London, Series A, 133, 60-72. https://doi.org/10.1098/rspa.1931.0130 [4] Wu, T.T. and Yang, C.N. (1976) Dirac Monopole without Strings: Monopole Harmonics. Nuclear Physics B, 107, 365-380. https://doi.org/10.1016/0550-3213(76)90143-7 [5] 陆启铿. 微分几何学及其在物理学中的应用(纯粹数学与应用数学专著第16号) [M]. 北京: 科学出版社, 1982: 第2章. [6] 侯伯元, 侯伯宇. 物理学家用微分几何[M]. 北京: 科学出版社, 1990. [7] ‘t Hooft, G. (1974) Magnetic Monopoles in Unified Gauge Theories. Nuclear Physics B, 79, 276-284. https://doi.org/10.1016/0550-3213(74)90486-6 [8] Polyakov, A.M. (1974) Particle Spectrum in Quantum Field Theory. Journal of Experimental and Theoretical Physics, 20, 194-195. [9] Berry, M.V. (1984) Quantal Phase Factors Accompanying Adiabatic Changes. Proceedings of the Royal Society of London, Series A, 392, 45-57. https://doi.org/10.1098/rspa.1984.0023 [10] Berry, M.V. (1990) Anticipations of the Geometric Phase. Physics Today, 43, 34-40. https://doi.org/10.1063/1.881219 [11] 倪光炯, 陈苏卿. 高等量子力学[M]. 上海: 复旦大学出版社, 2000: 第6章. [12] Simon, B. (1983) Holonomy, the Quantum Adiabatic Theorem and Berry’s Phase. Physical Review Letters, 51, 2167-2170. https://doi.org/10.1103/PhysRevLett.51.2167 [13] Rytov, S.M. (1938) On Transition from Wave to Geometrical Optics. Doklady Akademii Nauk SSSR, 18, 263-266. [14] Vladimirskii, V.V. (1941) The Rotation of a Polarization Plane for Curved Light Ray. Doklady Akademii Nauk SSSR, 21, 222-225. [15] Pancharatnam, S. (1956) Generalized Theory of Interference, and Its Applications. Proceedings of the Indian Academy of Sciences A, 44, 247-262. https://doi.org/10.1007/BF03046050 [16] Chiao, R.Y. and Wu, Y.S. (1986) Manifestations of Berry’s Topological Phase for the Photon. Physical Review Letters, 57, 933-936. https://doi.org/10.1103/PhysRevLett.57.933 [17] Tomita, A. and Chiao, R.Y. (1986) Observation of Berry’s Topological Phase by Use of an Optical Fiber. Physical Review Letters, 57, 937-940. https://doi.org/10.1103/PhysRevLett.57.937 [18] Kwiat, P.G. and Chiao, R.Y. (1991) Observation of a Nonclassical Berry’s Phase for the Photon. Physical Review Letters, 66, 588-591. https://doi.org/10.1103/PhysRevLett.66.588 [19] Haldane, F.D.M. (1986) Path Dependence of the Geometric Rotation of Polarization in Optical Fibers. Optics Letters, 11, 730-732. https://doi.org/10.1364/OL.11.000730 [20] Robinson, A.L. (1986) An Optical Measurement of Berry’s Phase. Science, 234, 424-426. https://doi.org/10.1126/science.234.4775.424 [21] Gao, X.C. (2002) Geometric Phases for Photons in an Optical Fibre and Some Related Predictions. Chinese Physical Letters, 19, 613-616. https://doi.org/10.1088/0256-307X/19/5/302 [22] 李华钟. 简单物理系统的整体性: 贝里相位及其他[M]. 上海: 上海科学技术出版社, 1998: 第12章. [23] Mead, C.A. and Truhlar, D.G. (1979) On the Determination of Born-Oppenheimer Nuclear Motion Wave Functions Including Complications Due to Conical Intersections and Identical Nuclei. The Journal of Chemical Physics, 70, 2284-2296. https://doi.org/10.1063/1.437734 [24] Lewis Jr., H.R. and Riesenfeld, W.B. (1969) An Exact Quantum Theory of the Time-Dependent Harmonic Oscillator and of a Charged Particle in a Time-Dependent Electromagnetic Field. Journal of Mathematical Physics (New York), 10, 1458-1473. https://doi.org/10.1063/1.1664991 [25] Yang, C.N. and Mills, R.L. (1954) Conservation of Isotopic Spin and Isotopic Gauge Invariance. Physical Review, 96, 191-195. https://doi.org/10.1103/PhysRev.96.191 [26] Gao, X.C., Xu, J.B. and Qian, T.Z. (1991) Geometric Phase and the Generalized Invariant Formulation. Physical Review A, 44, 7016-7021. https://doi.org/10.1103/PhysRevA.44.7016 [27] Gao, X.C., Gao, J., Qian, T.Z. and Xu, J.B. (1996) Quantum-Invariant Theory and the Evolution of a Quantum Scalar Field in Robertson-Walker Flat Spacetimes. Physical Review D, 53, 4374-4381. https://doi.org/10.1103/PhysRevD.53.4374 [28] Gao, X.C., Fu, J., Li, X.H. and Gao, J. (1998) Invariant Formulation and Exact Solutions for the Relativistic Charged Klein-Gordon Field in a Time-Dependent Spatially Homogeneous Electric Field. Physical Review A, 57, 753-761. https://doi.org/10.1103/PhysRevA.57.753 [29] Aharonov, Y. and Anandan. J. (1987) Phase Change during a Cyclic Quantum Evolution. Physical Review Letters, 58, 1593-1596. https://doi.org/10.1103/PhysRevLett.58.1593 [30] Bouchiat, C. and Gibbons, G.W. (1988) Non-Integrable Quantum Phase in the Evolution of a Spin-1 System: A Physical Consequence of the Non-Trivial Topology of the Quantum State-Space. Journal de Physique (Paris), 49, 187-199. https://doi.org/10.1051/jphys:01988004902018700 [31] Mizrahi, S.S. (1989) The Geometrical Phase: An Approach through the Use of Invariants. Physics Letters A, 138, 465-468. https://doi.org/10.1016/0375-9601(89)90746-9 [32] Gao, X.-C., Xu, J.-B. and Qian, T.-Z. (1992) Invariants and Geometric Phase for Systems with Non-Hermitian Time-Dependent Hamiltonians. Physical Review A, 46, 3626-3630. https://doi.org/10.1103/PhysRevA.46.3626 [33] Joye, A. and Pfister, C.-E. (1993) Non-Abelian Geometric Effect in Quantum Adiabatic Transitions. Physical Review A, 48, 2598-2608. https://doi.org/10.1103/PhysRevA.48.2598 [34] Samuel, J. and Bhandari, R. (1988) General Setting for Berry’s Phase. Physical Review Letters, 60, 2339-2342. https://doi.org/10.1103/PhysRevLett.60.2339 [35] Song, D.-Y. (2000) Geometric Phase, Hannay’s Angle, and an Exact Action Variable. Physical Review Letters, 85, 1141-1144. https://doi.org/10.1103/PhysRevLett.85.1141 [36] Gao, X.-C., Xu, J.-B. and Qian, T.-Z. (1991) Formally Exact Solution and Geometric Phase for the Spin-J System. Physics Letters A, 152, 449-452. https://doi.org/10.1016/0375-9601(91)90552-J [37] Datta, N., Ghosh, G. and Engineer, M.H. (1989) Exact Integrability of the Two-Level System: Berry’s Phase and Nonadiabatic Corrections. Physical Review A, 40, 526-529. https://doi.org/10.1103/PhysRevA.40.526 [38] Sjöqvist, E., Pati, A.K., Ekert, A., Anandan, J.S., Ericsson, M., Oi, D.K.L. and Vedral, V. (2000) Geometric Phases for Mixed States in Interferometry. Physical Review Letters, 85, 2845-2848. https://doi.org/10.1103/PhysRevLett.85.2845 [39] Mukunda, N., Arvind, A., Chaturvedi, S. and Simon, R. (2001) Bargmann Invariants and Off-Diagonal Geometric Phases for Multilevel Quantum Systems: A Unitary-Group Approach. Physical Review A, 65, Article ID: 012102. https://doi.org/10.1103/PhysRevA.65.012102 [40] Monzón, J.J. and Sánchez-soto, L.L. (2001) A Simple Optical Demonstration of Geometric Phases from Multilayer Stacks: The Wigner Angle as an Anholonomy. Journal of Modern Optics, 48, 21-34. https://doi.org/10.1080/09500340108235151 [41] Baba, N., Murakami, N. and Ishigaki, T. (2001) Nulling Interferometry by Use of Geometric Phase. Optics Letters, 26, 1167-1169. https://doi.org/10.1364/OL.26.001167 [42] Kaneko, K. (1987) Quantum Adiabatic Approximation to Interacting Boson-Fermion Systems. Physics Letters A, 119, 329-332. https://doi.org/10.1016/0375-9601(87)90607-4 [43] Gao, X.C., Gao, J. and Fu, J. (1996) Quantum Invariant Theory and the Motion of an Ion in a Combined Trap. Acta Physica Sinina, 45, 912-923. [44] Jones, J.A., Vedral, V., Ekert, A. and Castagnoli, G. (2000) Geometric Quantum Computation Using Nuclear Magnetic Resonance. Nature, 403, 869-871. https://doi.org/10.1038/35002528 [45] Martinez, J.C. (1990) Berry’s Phase in Field Theory. Physical Review D, 42, 722-725. https://doi.org/10.1103/PhysRevD.42.722 [46] Mashhoon, B. (1999) On the Spin-Rotation-Gravity Coupling. General Relativity and Gravitation, 31, 681-691. https://doi.org/10.1023/A:1026649213136 [47] Stern, A. (1992) Berry’s Phase, Motive Forces, and Mesoscopic Conductivity. Physical Review Letters, 68, 1022-1025. https://doi.org/10.1103/PhysRevLett.68.1022 [48] Li, H.Z. and Wu, Y.S. (1988) Observable Effects of the Quantum Adiabatic Phase for Non-Cyclic Evolution. Physical Review B, 38, 11907-11910. https://doi.org/10.1103/PhysRevB.38.11907 [49] Duan, L.-M., Cirac, J.I. and Zoller, P. (2001) Geometric Manipulation of Trapped Ions for Quantum Computation. Science, 292, 1695-1697. https://doi.org/10.1126/science.1058835 [50] Kendrick, B.K. (2000) Geometric Phase Effects in the H + D2 → HD + D Reaction. Journal of Chemical Physics, 112, 5679-5704. https://doi.org/10.1063/1.481143 [51] 张礼, 葛墨林. 量子力学的前沿问题[M]. 北京: 清华大学出版社, 2000: 第5章. [52] 李福利. 高等激光物理学[M]. 合肥: 中国科技大学出版社, 1992: 第3章. [53] 杨伯君. 量子光学基础[M]. 北京: 北京邮电大学出版社, 1996: 第1章. [54] Wei, J. and Norman, E. (1963) Lie Algebraic Solution of Linear Differential Equations. Journal of Mathematical Physics (New York), 4, 575-582. https://doi.org/10.1063/1.1703993 [55] 倪光炯, 陈苏卿. 高等量子力学[M]. 上海: 复旦大学出版社, 2000: 第8章. [56] Lu, H.X., Wang, X.Q., Liu, H.J. and Zhang, Y.D. (2001) A Generalized Multiphoton Jaynes-Cummings Model for Two Collectively Radiating Atoms Solved via Supersymmetric Unitary Transformation. Modern Physics Letters B, 15, 479-485. https://doi.org/10.1142/S0217984901001963 [57] Andreev, V.A. and Lerner, P.B. (1989) Supersymmetry in the Jaynes-Cummings Model. Physics Letters A, 134, 507-511. https://doi.org/10.1016/0375-9601(89)90696-8 [58] Geron, C. (1999) On the Jaynes-Cummings Hamiltonian Supersymmetric Characteristics. Bulletin of Society of Royal Science of Liège, 68, 403-408. [59] Fan, H.Y. and Li, L.S. (1996) Supersymmetric Unitary Operator for Some Generalized Jaynes-Cummings Models. Communications in Theoretical Physics, 25, 105-110. https://doi.org/10.1088/0253-6102/25/1/105 [60] Huang, H.B. and Fan, H.Y. (1991) Jaynes-Cummings Model for Double m-Photon Lasers. Physical Letters A, 159, 323-327. https://doi.org/10.1016/0375-9601(91)90441-A [61] 倪光炯, 陈苏卿. 高等量子力学[M]. 上海: 复旦大学出版社, 2000: 第1章. [62] 孙景李. 时间、空间与相对论[M]. 南京: 南京大学出版社, 1994. [63] Overduin, J.M. and Wesson, P.S. (1997) Kaluza-Klein Gravity. Physics Reports, 283, 303-378. https://doi.org/10.1016/S0370-1573(96)00046-4 [64] Scully, M.O. and Zubairy, M.S. (1997) Quantum Optics. Chap. 7, Cambridge University Press, Cambridge, UK. https://doi.org/10.1017/CBO9780511813993 [65] Anonymous Author. A Material on Review of Electromagnetically Induced Transparency Offered by EIT Group of St. Andrews University, UK. http://star-www.st-and.ac.uk/physics/research/eit (Original Website) https://photonics.wp.st-andrews.ac.uk/ (New Website) [66] Greentree, A.D., Smith, T.B., de Echaniz, S.R., Durrant, A.V., Marangos, J.P., Segal, D.M. and Vaccaro, J.A. (2002) Resonant and Off-Resonant Transients in Electromagnetically Induced Transparency: Turn-On and Turn-Off Dynamics. Physical Review A, 65, Article ID: 053802. https://doi.org/10.1103/PhysRevA.65.053802 [67] 姚景芹, 武海斌, 王海. 四能级原子量子相干过程中瞬态光学特性[J]. 量子光学学报, 2003, 9(3): 121-125. [68] Arve, P., Jänes, P. and Thylén, L. (2004) Propagation of Two-Dimensional Pulses in Electromagnetically Induced Transparency Media. Physical Review A, 69, Article ID: 063809. https://doi.org/10.1103/PhysRevA.69.063809 [69] 张登玉. 量子计算机存储器与环境相互作用的相干特性[J]. 怀化师专学报, 1997, 16(6): 46-50. [70] 张登玉. 量子逻辑门与量子退相干[M]. 北京: 科学出版社, 2013: 第3章. [71] 章乃森. 粒子物理学(下册) [M]. 北京: 科学出版社, 1994: 第8章, 99-106. [72] 沈建其. 电动力学与光学相关专题研究进展[R]. 全国高校第十二届《电动力学》教学暨学术研讨会报告文选,福建泉州师范学院, 2009年8月23-27日, 13-26. [73] Bliokh, K.Y., Smirnova, D. and Nori, F. (2015) Quantum Spin Hall Effect of Light. Science, 348, 1448-1451. https://doi.org/10.1126/science.aaa9519 [74] Yao, A.M. and Padgett, M.J. (2011) Orbital Angular Momentum: Origins, Behavior and Applications. Advances in Optics and Photonics, 3, 161-204. https://doi.org/10.1364/AOP.3.000161 [75] Brasselet, E., Murazawa, N. and Misawa, H. (2009) Optical Vortices from Liquid Crystal Droplets. Physical Review Letters, 103, Article ID: 103903. https://doi.org/10.1103/PhysRevLett.103.103903 [76] Allen, L. and Padgett, M.J. (2000) The Poynting Vector in Laguerre-Gaussian Beams and the Interpretation of Their Angular Momentum Density. Optics Communications, 184, 67-71. https://doi.org/10.1016/S0030-4018(00)00960-3 [77] 须重明, 吴雪君. 广义相对论与现代宇宙学[M]. 南京: 南京师范大学出版社, 1999. [78] 冯麟保, 刘雪成, 刘明成. 广义相对论[M]. 长春: 吉林科学技术出版社, 1995. [79] 俞允强. 广义相对论引论[M]. 北京: 北京大学出版社, 1997. [80] 白正国, 沈一兵, 水乃翔, 郭孝英. 微分几何初步[M]. 北京: 高等教育出版社, 1992. [81] 陈志华. 复流形[M]. 北京: 科学出版社, 2010.