钠离子通道与相关心脏疾病的研究进展
Research Progress in Voltage-Gated Sodium Channels and Related Cardiac Diseases
DOI: 10.12677/HJBM.2020.104014, PDF, 下载: 572  浏览: 1,096  科研立项经费支持
作者: 徐艺珈, 孙健芳, 韩雨诺, 赵明沂*:沈阳药科大学,生命科学与生物制药学院,辽宁 沈阳
关键词: 电压门控钠离子通道Nav1.5Nav1.8心律失常心脏疾病心脏毒性Voltage Gated Sodium Channels Nav1.5 Nav1.8 Arrhythmia Cardiac disease Cardiac Toxicity
摘要: 电压门控钠离子通道广泛分布于可兴奋细胞的细胞膜上,参与动作电位的产生及传导,主要负责调控动作电位的初始上升相。钠离子通道是最重要的心脏离子通道之一,分布于窦房结、传导系统、心房肌和心室肌,是一类抗心律失常药物的靶蛋白。心脏钠通道的表达正常与否直接影响到心脏的生理病理功能,其功能获得性和功能缺失性的突变均会导致相关心脏疾病的发生。本文阐述了心脏钠离子通道(Nav1.5和Nav1.8)的结构及功能,以及通道异常表达时相关疾病的研究现状,为药物临床应用前的心脏毒性研究及心血管药物的研究开发和临床应用提供重要的理论依据。
Abstract: Voltage gated sodium channels (VGSCs) are transmembrane proteins responsible for the initial and rapid phase of the action potential in most electrically excitable cells. VGSCs are the most important cardiac ion channels, which are widely located in highly expressed in all types of cardiac myocytes, including the sinus node, the conduction system, atrial and ventricular myocytes. VGSCs are target proteins of type 1 anti-arrhythmic drugs. The expression of cardiac VGSCs may affect the physiological and pathological functions of cardiac. Gain-of-function mutations and loss-of-function mutations of cardiac VGSCs may cause several cardiac diseases. In this article, we focused on reviewing the structure, function and related diseases of cardiac VGSCs (Nav1.5 and Nav1.8), in hopes of providing a reference for further in-depth research regarding relevant drug cardiotoxicity before clinical applications and cardiovascular drug discovery.

文章引用:徐艺珈, 孙健芳, 韩雨诺, 赵明沂. 钠离子通道与相关心脏疾病的研究进展[J]. 生物医学, 2020, 10(4): 103-109. https://doi.org/10.12677/HJBM.2020.104014

电压门控钠离子通道(Voltage-gated sodium channels, VGSCs)广泛存在于人体中,主要分布在心肌、骨骼肌、神经细胞膜上,负责调控动作电位的初始上升相。VGSCs在轴突和肌肉中的分布最为密集,常常是该组织中数量最多的离子通道。以哺乳动物的心肌细胞为例,每个心肌细胞表达的VGSCs可达到十万多个,每个浦肯野纤维表达的VGSCs可达到一百多万个,通过心脏VGSCs的离子流直接决定着心房肌、浦肯野纤维和心室肌的兴奋性和传导性。鉴于心脏钠离子通道在心脏电兴奋性中的重要作用,其功能获得性及功能缺失性的突变与一系列心脏相关疾病密切相关,如长QT综合征(Long-QT syndrome, LQTs),Brugada综合征(Brugada syndrome, BrS),病态窦性综合征(Sick sinus syndrome, SSS),进行性心脏传导疾病(Progressive cardiac conduction disease, PCCD)和扩张型心肌病(Dilated cardiomyopathy, DCM)等。

2. VGSCs的结构和功能

GSCs由一个α亚基(230~260 kDa)和一个或多个β亚基(33~36 kDa)组成,其中α亚基和β亚基通过二硫键或非共价键相连接。α亚基是其主要的功能性亚单位,是由约2000个氨基酸残基组成的跨膜蛋白,跨膜部分由4个同源结构域组成,每个结构域又包含了六个跨膜片段,即S1~S6 (图1)。其中,S5-S6以及二者之间的片段SS1和SS2形成了跨膜孔道结构的外庭。β亚基不参与构成VGSCs的孔状结构,主要是对α亚基的表达、电压依赖性、动力学以及稳定性等起到一定的调节作用[1] [2]。

目前,人源VGSCs的α亚基已发现至少9种,分别命名为Nav1.1~Nav1.9,由9种不同的基因编码(SCN1A-SCN5A, SCN8A-SCN11A),具有高度的同源性及组织特异性。

2.1. 心脏中表达最为丰富的VGSCs~Nav1.5

在人类和小鼠的心脏中可以检测到Nav1.1~Nav1.5通道亚型的表达,其表达水平略有差异[3] (图2),其中,位于染色体3p21由SCN5A编码的Nav1.5的表达最为丰富,遍布于所有类型的心肌细胞,包括窦房结、传导系统、心房肌和心室肌,定位于所有的亚细胞膜结构,如闰盘区、外质膜和T管系统等,对心肌细胞兴奋的产生及传导具有重要的意义。在人及猪的全心脏中,Nav1.5的表达明显高于其在小鼠及大鼠全心脏中的表达,说明越高级的哺乳动物心脏中Nav1.5占据的比例越高,起到的作用也越重要。在SCN5A基因敲除的小鼠中,SCN5A/−的小鼠心室形态发生严重缺陷,导致了宫内致死;SCN5A+/−的小鼠会正常存活,但是存在心脏缺陷,如房室传导阻滞、心肌内传导延迟、室性心动过速等。Nav1.5决定了心脏的兴奋性,是目前公认的表达最丰富也最为重要的心脏钠离子通道。

Figure 1. Structure of VGSCs

图1. VGSCs的结构

Figure 2. Transcription levels of VGSCs in different mammalian hearts [3]

图2. VGSCs在不同哺乳动物心脏的转录水平[3]

2.2. 表达在心脏神经丛中的VGSCs~Nav1.8

早期研究结果证实,位于染色体3p21-22由SCN10A编码的Nav1.8主要表达在背根神经节的小直径神经元及三叉神经元中,具有慢激活和慢失活的特点,与神经痛、炎性痛等疼痛症密切相关[4] [5]。然而,近几年,有报导发现Nav1.8在鼠心脏神经丛中具有明显表达[6],在人的心脏神经丛及心肌细胞中均有表达[7],因此猜测Nav1.8对调节心脏神经丛中的神经元功能具有重要的作用,并且初步证明了其与心脏房室传导阻滞和心房颤动的发生密切相关。还有研究发现,SCN10A会通过增强子/启动子的相互作用来影响SCN5A的表达,并有研究证明SCN10A的基因突变后可以通过控制SCN5A的转录水平从而影响心脏传导参数[8],因此,Nav1.5的表达水平对这种相互作用至关重要,是影响心脏传导的决定性因素。还有研究发现,Nav1.8特异性的抑制剂A-803467可以缩短心肌细胞的动作电位,缩短PR间期,说明Nav1.8可能会延长心脏的传导[9] [10]。

3. 心脏VGSCs相关疾病

3.1. LQTs

LQTs是一种遗传性的心律失常疾病,指的是心电图中QT间期的延长,与心室的复极化有关,会产生多态性室性心动过速、晕厥和猝死[11]。遗传性的LQTs被分为13个亚型,LQT1~LQT13,其中LQT1、LQT2及LQT3是最常见的遗传形式,与心脏离子通道的基因突变有关。LQT3与SCN5A的基因突变密切相关,常在休息或睡眠时发病,其患者表现为心律失常,且常伴有心动过缓。已发现数千种与LQTs相关的基因突变,其中,有15%的突变体来自于SCN5A,它们广泛分布于蛋白质中,导致钠离子通道活性的增强。如,SCN5A的突变体ΔKPQ (Lys-1505、Pro-1506及Glu-1507)、N1325S、R1644H、I1768V、E1784K和L1786Q等[12] [13] [14] [15]。LQT3可由Nav1.5功能获得性的突变引起的,导致了去极化钠电流的增多。LQT3相关的基因突变还可以加快从失活状态的恢复,干扰电压依赖性的激活,并增加通道的电流密度[16]。

3.2. BrS

BrS是一种染色体遗传病,由于心电图的动态及可变性,使其往往难以诊断。BrS心电图表现有三种形式:1型表现为下斜型ST段抬高≥0.2 mV,T波负向;2型表现为马鞍型ST段抬高,起始部分抬高≥0.2 mV,下凹部分抬高≥0.1 mV;3型表现为马鞍型或下斜型ST段抬高<0.1 mV [17] [18]。BrS患者会产生室性心律失常、晕厥甚至猝死,经常发生在年轻的群体中,且常在休息或睡眠时发病。与LQT3不同,BrS是由Nav1.5功能缺失性的突变引起的,会使钠电流峰值降低,减慢从失活状态的恢复,通道蛋白运输的阻滞,并导致钠通道的缺失[19]。约有10%~30%的BrS病例是由于SCN5A的突变造成的,如A124D、V1378M、E1784K和R2012H等[19] [20] [21]。还有报导显示,一些SCN5A的突变在较高的温度下会进一步的降低钠电流的峰值,导致心律失常[22]。近些年有研究发现,BrS与SCN10A的突变也密切相关,由于SCN10A的突变导致的BrS约占其患者的16.7%,这表明SCN10A是一种主要的BrS的敏感基因。与其他原因导致的BrS患者相比,SCN10A突变导致的BrS患者具有更明显的症状及较长的PR、QRS间期,这可能与突变的Nav1.8和Nav1.5在体内的相互作用有关[23]。

3.3. SSS

SSS是一种由窦房结功能障碍而引起的心脏疾病,在SSS中,窦房结的起搏功能被破坏,导致冲动传导的改变,多发生在50岁以上的人群中[24]。SSS的心电图特点会表现出窦性心动过缓、窦性停搏、窦房传导障碍、房性快速心律失常[25]。SSS的患者会发生中枢神经系统或心血管系统的改变,以及一些其他症状,如头晕、判断失误、消化不良,在运动过程中,许多患者会产生胸痛、呼吸困难或疲劳。SSS可由先天(如特发性退行性纤维化浸润、淀粉样变性和心肌病)或非典型(如高钾血症、低氧血症)等因素引起的,从而改变了窦房结结构或功能[25]。最典型的SSS的生理特征是由SCN5A的突变导致的,SCN5A功能缺失性的突变会降低窦房结与周围心房之间的电耦合,从而导致传导阻滞;SCN5A功能获得性的突变会延长窦房结的动作电位,影响其复极化,从而导致窦性心律的降低[26] [27]。

3.4. PCCD

PCCD是一种具有遗传倾向的心脏传导系统疾病,又被称作Lev-Lenègre综合征,临床表现为心脏传导速率变慢,并伴有传导阻滞,会导致晕厥甚至猝死。在传导异常的患者心室发现了纤维组织的沉积[28]。与PCCD相关的SCN5A的突变,会使心脏钠通道的密度减少,激活减慢,动作电位的上升幅度减慢,心肌细胞传导速度减慢,从而导致传导阻滞。在SCN5A基因中,由于点突变或单倍不足导致的功能缺失性突变,导致有效通道的确实,与PCCD密切相关[29] [30]。

3.5. DCM

DCM是一种心脏疾病,其特征是心室扩张和收缩力的改变,从而降低收缩功能,临床表现为心力衰竭、心律失常[31]。大约30%的自发病患者有家族史,这表明DCM具有家族遗传性。有研究表明,1.7%的DCM病例与SCN5A突变有关,突变后会产生电兴奋性障碍,对兴奋性的影响可能会导致心室扩张,如位于电压敏感区的突变体R222Q和R225W [32] [33] [34]。SCN5A突变还可能会使H+通过突变的通道泄露,从而引起心肌细胞酸化,导致DCM的发生[35]。

4. 结论

一直以来,Nav1.5被认为是最重要的心脏钠离子通道,在心脏相关疾病中具有不可替代的位置。近几年,Nav1.8被发现与心脏传导异常有关,使其成为另一个具有较好前景的心脏钠离子通道。尽管Nav1.8影响心脏功能的具体机制尚未完全明确,且缺少在心脏疾病中的实际应用,这一发现仍旧是对心脏兴奋性认识的一个重要的里程碑,为新药心脏毒性研究及心血管药物的研发提供了重要的依据。

基金项目

辽宁省博士科研启动基金计划项目(2019-BS-231),沈阳药科大学大学生创新创业训练项目(X202010163064) (202010163006)。

参考文献

[1] Ekberg, J. and Adams, D.J. (2006) Neuronal Voltage-Gated Sodium Channel Subtypes: Key Roles in Inflammatory and Neuropathic Pain. Int J Biochem Cell Biol., 38, 2005-2010. https://doi.org/10.1016/j.biocel.2006.06.008
[2] Payandeh, J., Gamal El-Din, T.M., Scheuer, T., et al. (2012) Crystal Structure of a Voltage-Gated Sodium Channel in Two Potentially Inactivated States. Nature, 486, 135-139. https://doi.org/10.1038/nature11077
[3] Blechschmidt, S., Haufe, V., Benndorf, K., et al. (2008) Voltage-Gated Na+ Channel Transcript Patterns in the Mammalian Heart Are Species-Dependent. Prog Biophys Mol Biol, 98, 309-318. https://doi.org/10.1016/j.pbiomolbio.2009.01.009
[4] Thakor, D.K., Lin, A., Matsuka, Y., et al. (2009) Increased Peripheral Nerve Excitability and Local NaV1.8 mRNA Up-Regulation in Painful Neuropathy. Mol Pain, 5, 14.
https://doi.org/10.1186/1744-8069-5-14
[5] Coward, K., Plumpton, C., Facer, P., et al. (2000) Immunolocalization of SNS/PN3 and NaN/SNS2 Sodium Channels in Human Pain States. Pain, 85, 41-50.
https://doi.org/10.1016/S0304-3959(99)00251-1
[6] Verkerk, A.O., Remme, C.A., Schumacher, C.A., et al. (2012) Functional Nav1.8 Channels in Intracardiac Neurons: The Link between SCN10A and Cardiac Electrophysiology. Circ Res., 111, 333-343. https://doi.org/10.1161/CIRCRESAHA.112.274035
[7] Facer, P., Punjabi, P.P., Abrari, A., et al. (2011) Localisation of SCN10A Gene Product Na(v)1.8 and Novel Pain-Related Ion Channels in Human Heart. International Heart Journal, 52, 146-152. https://doi.org/10.1536/ihj.52.146
[8] van den Boogaard, M., Smemo, S., Burnicka-Turek, O., et al. (2014) A Common Genetic Variant within SCN10A Modulates Cardiac SCN5A Expression. J Clin Invest, 124, 1844-1852. https://doi.org/10.1172/JCI73140
[9] Yang, T., Atack, T.C., Stroud, D.M., et al. (2012) Blocking Scn10a Channels in Heart Reduces Late Sodium Current and Is Antiarrhythmic. Circ Res., 111, 322-332. https://doi.org/10.1161/CIRCRESAHA.112.265173
[10] Chambers, J.C., Zhao, J., Terracciano, C.M., et al. (2010) Genetic Variation in SCN10A Influences Cardiac Conduction. Nat Genet., 42, 149-152.
https://doi.org/10.1038/ng.516
[11] Crotti, L., Celano, G., Dagradi, F., et al. (2008) Congenital Long QT Syndrome. Orphanet J Rare Dis., 3, 18.
https://doi.org/10.1186/1750-1172-3-18
[12] Clancy, C.E., Tateyama, M., Liu, H., et al. (2003) Non-Equilibrium Gating in Cardiac Na+ Channels: An Original Mechanism of Arrhythmia. Circulation, 107, 2233-2237. https://doi.org/10.1161/01.CIR.0000069273.51375.BD
[13] Wang, D.W., Yazawa, K., George Jr., A.L., et al. (1996) Characterization of Human Cardiac Na+ Channel Mutations in the Congenital Long QT Syndrome. Proc Natl Acad Sci USA, 93, 13200-13205. https://doi.org/10.1073/pnas.93.23.13200
[14] Makita, N., Behr, E., Shimizu, W., et al. (2008) The E1784K Mutation in SCN5A Is Associated with Mixed Clinical Phenotype of Type 3 Long QT Syndrome. J Clin Invest., 118, 2219-2229. https://doi.org/10.1172/JCI34057
[15] Kanters, J.K., Yuan, L., Hedley, P.L., et al. (2014) Flecainide Provocation Reveals Concealed Brugada Syndrome in a Long QT Syndrome Family with a Novel L1786Q Mutation in SCN5A. Circ J., 78, 1136-1143.
https://doi.org/10.1253/circj.CJ-13-1167
[16] Song, W. and Shou, W. (2012) Cardiac Sodium Channel Nav1.5 Mutations and Cardiac Arrhythmia. Pediatr Cardiol., 33, 943-949.
https://doi.org/10.1007/s00246-012-0303-y
[17] Wilde, A.A., Antzelevitch, C., Borggrefe, M., Brugada, J., Bru-gada, R., Brugada, P., et al. (2002) Proposed Diagnostic Criteria for the Brugada Syndrome: Consensus Report. Circulation, 106, 2514-2519.
https://doi.org/10.1161/01.CIR.0000034169.45752.4A
[18] Wilde, A.A., Postema, P.G., Di Diego, J.M., et al. (2010) The Pathophysiological Mechanism Underlying Brugada Syndrome: Depolarization versus Repolarization. J Mol Cell Cardiol., 49, 543-553. https://doi.org/10.1016/j.yjmcc.2010.07.012
[19] Moreau, A., Keller, D.I., Huang, H., et al. (2012) Mexiletine Differentially Restores the Trafficking Defects Caused by Two Brugada Syndrome Mutations. Front Pharmacol., 3, 62. https://doi.org/10.3389/fphar.2012.00062
[20] Ortiz-Bonnin, B., Rinné, S., Moss, R., et al. (2016) Elec-trophysiological Characterization of a Large Set of Novel Variants in the SCN5A-Gene: Identification of Novel LQTS3 and BrS Mutations. Pflugers Arch., 468, 1375-1387.
https://doi.org/10.1007/s00424-016-1844-3
[21] Veltmann, C., Barajas-Martinez, H., Wolpert, C., et al. (2016) Further Insights in the Most Common SCN5A Mutation Causing Overlapping Phenotype of Long QT Syndrome, Brugada Syndrome, and Conduction Defect. J Am Heart Assoc., 5, pii: e003379.
https://doi.org/10.1161/JAHA.116.003379
[22] Samani, K., Wu, G., Ai, T., et al. (2009) A Novel SCN5A Mutation V1340I in Brugada Syndrome Augmenting Arrhythmias during Febrile Illness. Heart Rhythm., 6, 1318-1326. https://doi.org/10.1016/j.hrthm.2009.05.016
[23] Hu, D., Barajas-Martínez, H., Pfeiffer, R., et al. (2014) Mutations in SCN10A Are Responsible for a Large Fraction of Cases of Brugada Syndrome. J Am Coll Cardiol., 64, 66-79. https://doi.org/10.1016/j.jacc.2014.04.032
[24] Benson, D.W., Wang, D.W., Dyment, M., et al. (2003) Congenital Sick Sinus Syndrome Caused by Recessive Mutations in the Cardiac Sodium Channel Gene (SCN5A). J Clin Invest., 112, 1019-1028. https://doi.org/10.1172/JCI200318062
[25] Adán, V. and Crown, L.A. (2003) Diagnosis and Treatment of Sick Sinus Syndrome. Am Fam Physician., 67, 1725-1732.
[26] Veldkamp, M.W., Wilders, R., Baartscheer, A., et al. (2003) Contribution of Sodium Channel Mutations to Bradycardia and Sinus Node Dysfunction in LQT3 Families. Circ Res., 92, 976-983. https://doi.org/10.1161/01.RES.0000069689.09869.A8
[27] Gregoratos, G. (2003) Cardiology Patient Pages. Sick Sinus Syndrome. Circulation, 108, e143-144. https://doi.org/10.1161/01.CIR.0000102938.55119.EC
[28] Kawaguchi, T., Hayashi, H., Miyamoto, A., et al. (2013) Prognostic Implications of Progressive Cardiac Conduction Disease. Circ J., 77, 60-67.
https://doi.org/10.1253/circj.CJ-12-0849
[29] Probst, V., Kyndt, F., Potet, F., et al. (2003) Haploinsufficiency in Combination with Aging Causes SCN5A-Linked Hereditary Lenègre Disease. J Am Coll Cardiol., 41, 643-652. https://doi.org/10.1016/S0735-1097(02)02864-4
[30] Meregalli, P.G., Tan, H.L., Probst, V., et al. (2009) Type of SCN5A Mutation Determines Clinical Severity and Degree of Conduction Slowing in Loss-of-Function Sodium Channelopathies. Heart Rhythm., 6, 341-348.
https://doi.org/10.1016/j.hrthm.2008.11.009
[31] Sanbe, A. (2013) Dilated Cardiomyopathy: A Disease of the Myocardium. Biol Pharm Bull., 36, 18-22. https://doi.org/10.1248/bpb.b212023
[32] Olson, T.M., Michels, V.V., Ballew, J.D., et al. (2005) Sodium Channel Mutations and Susceptibility to Heart Failure and Atrial Fibrillation. JAMA, 293, 447-454.
https://doi.org/10.1001/jama.293.4.447
[33] McNair, W.P., Sinagra, G., Taylor, M.R., et al. (2011) SCN5A Mu-tations Associate with Arrhythmic Dilated Cardiomyopathy and Commonly Localize to the Voltage-Sensing Mechanism. J Am Coll Cardiol., 57, 2160-2168.
https://doi.org/10.1016/j.jacc.2010.09.084
[34] Moreau, A., Gosselin-Badaroudine, P., Delemotte, L., et al. (2015) Gating Pore Currents Are Defects in Common with Two Nav1.5 Mutations in Patients with Mixed Arrhythmias and Dilated Cardiomyopathy. J Gen Physiol., 145, 93-106.
https://doi.org/10.1085/jgp.201411304
[35] Gosselin-Badaroudine, P., Keller, D.I., Huang, H., et al. (2012) A Proton Leak Current through the Cardiac Sodium Channel Is Linked to Mixed Arrhythmia and the Dilated Cardiomyopathy Phenotype. PLoS ONE, 7, e38331.
https://doi.org/10.1371/journal.pone.0038331