煤矸石综合利用与资源化处理研究进展
Research Progress on Comprehensive Utilization and Resourceful Treatment of Coal Gangue
DOI: 10.12677/AEP.2021.112040, PDF, HTML, XML, 下载: 557  浏览: 1,137  科研立项经费支持
作者: 董增澳:山西大学环境科学研究所,山西 太原;山西省黄河实验室,山西 太原;山西大学环境与资源学院,山西 太原;李 萍, 耿 红*:山西大学环境科学研究所,山西 太原;山西省黄河实验室,山西 太原;贾一雪, 和建宇:山西大学环境与资源学院,山西 太原
关键词: 煤矸石综合利用资源化处理Coal Gangue Comprehensive Utilization Resource-Based Treatment
摘要: 煤矸石的资源化综合利用对于控制煤矸石污染、促进生态文明建设具有重要作用。由于煤矸石产量巨大,需要不断发掘新的利用途径。利用煤矸石制作填充材料,发电,生产砖、水泥等建筑材料是目前国内主要的无害化处理手段,从中获得高附加值产品是未来努力的方向。本文对不同类别、不同特性煤矸石的利用方式进行了综合分析,再结合现有的利用技术,在具有高附加值的农用肥料、微生物肥料和以分子筛及吸附性材料为代表的化工产品等方面提出煤矸石综合利用的发展建议,旨在为国内外煤矸石综合利用与资源化处理提供新的发展思路。
Abstract: The resource-oriented and comprehensive utilization of coal gangue plays an important role in making coal gangue pollution under control and promoting the development of ecological civiliza-tion. It is necessary to continuously explore new ways of utilization of coal gangue due to its large products. In the present, the main innocuous disposals of coal gangue are electricity-generation and production of fill materials and building materials like bricks and cement. In the future, the upward trend is to make high value-added products out of it. In this paper, through a comprehensive analysis of the current utilization of different categories and characteristics of coal gangue, we give suggestions on the comprehensive utilization of coal gangue in the aspects of the products with high value-added, including agricultural fertilizer, microbial fertilizer and chemical products, such as sorptive materials. It is hoped to provide some new insight into comprehensive utilization and resource-oriented treatment of coal gangue in the world.
文章引用:董增澳, 李萍, 贾一雪, 和建宇, 耿红. 煤矸石综合利用与资源化处理研究进展[J]. 环境保护前沿, 2021, 11(2): 363-371. https://doi.org/10.12677/AEP.2021.112040

参考文献

[1] 雷建红. 煤矸石的污染危害与综合利用分析[J]. 能源与节能, 2017(4): 90-91, 147.
[2] 李贞, 王俊章, 申丽明, 赵俊吉, 石鹏飞, 王杰, 等. 煤矸石物化成分对其资源化利用的影响[J]. 洁净煤技术, 2020, 26(6): 34-44.
[3] Li, M., Zhang, J., Li, A. and Zhou, N. (2020) Reutilisation of Coal Gangue and Fly Ash as Underground Backfill Materials for Surface Subsidence Control. Journal of Cleaner Production, 254, Article ID: 120113.
https://doi.org/10.1016/j.jclepro.2020.120113
[4] Guo, S., Zhang, J., Li, M., Zhou, N., Song, W., Wang, Z., et al. (2021) A Preliminary Study of Solid-Waste Coal Gangue Based Biomineralization as Eco-Friendly Underground Backfill Material: Material Preparation and Macro-Micro Analyses. Science of the Total Environment, 770, Article ID: 145241.
https://doi.org/10.1016/j.scitotenv.2021.145241
[5] 高礼. 煤矸石路用性能试验研究及其路堤稳定性分析[D]: [硕士学位论文]. 长沙: 中南大学, 2014.
[6] 郭彦霞, 张圆圆, 程芳琴. 煤矸石综合利用的产业化及其展望[J]. 化工学报, 2014, 65(7): 2443-2453.
[7] 杨方亮. 煤炭资源综合利用发电现状分析与前景探讨[J]. 中国煤炭, 2020, 46(10): 67-74.
[8] Long, G., Li, L., Li, W., Ma, K., Dong, W., Bai, C., et al. (2019) Enhanced Mechanical Properties and Durability of Coal Gangue Reinforced Cement-Soil Mixture for Foundation Treatments. Journal of Cleaner Production, 231, 468-482.
https://doi.org/10.1016/j.jclepro.2019.05.210
[9] 石鑫. 利用含钒钛尾矿与煤矸石制备多孔陶瓷工艺研究[D]: [硕士学位论文]. 成都: 成都理工大学, 2020.
[10] Wu, R., Dai, S., Jian, S., Huang, J., Tan, H.B. and Li, B.D. (2021) Utilization of Solid Waste High-Volume Calcium Coal Gangue in Autoclaved aerated Concrete: Physico-Mechanical Properties, Hydration Products and Economic Costs. Journal of Cleaner Production, 278, Article ID: 123416.
https://doi.org/10.1016/j.jclepro.2020.123416
[11] Zhao, Y., Qiu, J., Ma, Z. and Sun, X. (2020) Eco-Friendly Treatment of Coal Gangue for Its Utilization as Supplementary Cementitious Materials. Journal of Cleaner Production, 285, Article ID: 124834.
https://doi.org/10.1016/j.jclepro.2020.124834
[12] Zhang, Y. and Ling, T.-C. (2020) Reactivity Activation of Waste Coal Gangue and Its Impact on the Properties of Cement-Based Materials—A Review. Construction and Building Materials, 234, Article ID: 117424.
https://doi.org/10.1016/j.conbuildmat.2019.117424
[13] Qin, L. and Gao, X. (2019) Properties of Coal Gangue-Portland Cement Mixture with Carbonation. Fuel, 245, 1-12.
https://doi.org/10.1016/j.fuel.2019.02.067
[14] Yi, C., Ma, H., Zhu, H., Li, W., Xin, M., Liu, Y., et al. (2018) Study on Chloride Binding Capability of Coal Gangue Based Cementitious Materials. Construction and Building Ma-terials, 167, 649-656.
https://doi.org/10.1016/j.conbuildmat.2018.02.071
[15] Zhang, J., Chen, T. and Gao, X. (2021) Incorporation of Self-Ignited Coal Gangue in Steam Cured Precast Concrete. Journal of Cleaner Production, 292, Article ID: 126004.
https://doi.org/10.1016/j.jclepro.2021.126004
[16] Wang, Y., Tan, Y., Wang, Y. and Liu, C. (2020) Mechanical Properties and Chloride Permeability of Green Concrete Mixed with Fly Ash and Coal Gangue. Construction and Building Materials, 233, Article ID: 117166.
https://doi.org/10.1016/j.conbuildmat.2019.117166
[17] Gao, S., Zhao, G., Guo, L., Zhou, L. and Yuan, K. (2021) Utilization of Coal Gangue as Coarse Aggregates in Structural Concrete. Construction and Building Materials, 268, Article ID: 121212.
https://doi.org/10.1016/j.conbuildmat.2020.121212
[18] Meng, X., Ju, F. and He, Z. (2020) Research on Shotcrete in Mine Using Non-Activated Waste Coal Gangue Aggregate. Journal of Cleaner Production, 259, Article ID: 120810.
https://doi.org/10.1016/j.jclepro.2020.120810
[19] Liu, C., Deng, X., Liu, J. and Hui, D. (2019) Mechanical Properties and Microstructures of Hypergolic and Calcined Coal Gangue Based Geopolymer Recycled Concrete. Construction and Building Materials, 221, 691-708.
https://doi.org/10.1016/j.conbuildmat.2019.06.048
[20] Liu, Y., Lian, W., Su, W., Luo, J. and Wang, L. (2020) Synthesis and Mechanical Properties of Mullite Ceramics with Coal Gangue and Wastes Refractory as Raw Materials. International Journal of Applied Ceramic Technology, 17, 205-210.
https://doi.org/10.1111/ijac.13391
[21] Liu, M., Zhu, Z., Zhang, Z., Chu, Y., Yuan, B. and Wei, Z. (2020) Development of Highly Porous Mullite Whisker Ceramic Membranes for Oil-in-Water Separation and Resource Utilization of Coal Gangue. Separation and Purification Tech-nology, 237, Article ID: 116483.
https://doi.org/10.1016/j.seppur.2019.116483
[22] Huang, Q, Liu, T., Zhang, J., He, X., Liu, J., Luo, Z., et al. (2020) Properties and Pore-Forming Mechanism of Silica sand Tailing-Steel Slag-Coal Gangue Based Permeable Ceramics. Construction and Building Materials, 253, Article ID: 118870.
https://doi.org/10.1016/j.conbuildmat.2020.118870
[23] 张世鑫, 刘冬, 邵飞, 罗英强, 李万胜. 煤矸石综合利用工艺探索[J]. 洁净煤技术, 2013, 19(5): 92-95, 122.
[24] Long, J., Zhang, S. and Luo, K. (2019) Selenium in Chinese Coal Gangue: Distribution, Availability, and Recommendations. Resources, Conservation & Recycling, 149, 140-150.
https://doi.org/10.1016/j.resconrec.2019.05.039
[25] Wang, B., Ma, Y., Lee, X., Wu, P., Liu, F., Zhang, X., et al. (2020) Environmental-Friendly Coal Gangue-Biochar Composites Reclaiming Phosphate from Water as a Slow-Release fertilizer. Science of the Total Environment, 758, Article ID: 143664.
https://doi.org/10.1016/j.scitotenv.2020.143664
[26] 任晓玲, 周蕙昕, 高明, 舒元锋, 许泽胜, 舒新前. 煤矸石肥料的研究进展[J]. 中国煤炭, 2021, 47(1): 103-109.
[27] Han, J., Ha, Y., Guo, M., Zhao, P., Liu, Q., Liu, C., et al. (2019) Synthesis of Zeolite SSZ-13 from Coal Gangue via Ultrasonic Pretreatment Combined with Hydrothermal Growth Method. Ultrasonics Sonochemistry, 59, Article ID: 104703.
https://doi.org/10.1016/j.ultsonch.2019.104703
[28] Sahaya Dennish Babu, G., Sahaya Shajan, X., George, A., Parameswaran, P., Murugesan, S., Divakar, R., et al. (2017) Low-Cost Hydrothermal Synthesis and Characterization of Pentanary Cu2ZnxNi1-xSnS4 Nanoparticle Inks for thin Film Solar Cell Applications. Materials Science in Semiconductor Processing, 63, 127-136.
https://doi.org/10.1016/j.mssp.2017.02.015
[29] Bu, N., Liu, X., Song, S., Liu, J., Yang, Q., Li, R., et al. (2020) Synthesis of NaY Zeolite from Coal Gangue and Its Characterization for Lead Removal from Aqueous Solution. Ad-vanced Powder Technology, 31, 2699-2710.
https://doi.org/10.1016/j.apt.2020.04.035
[30] Zhou, J., Zheng, F., Li, H., Wang, J., Bu, N., Hu, P., et al. (2020) Optimization of Post-Treatment Variables to Produce Hierarchical Porous Zeolites from Coal Gangue to Enhance Ad-sorption Performance. Chemical Engineering Journal, 381, Article ID: 122698.
https://doi.org/10.1016/j.cej.2019.122698
[31] Mohammadi, R., Azadmehr, A. and Maghsoudi, A. (2020) En-hanced Competitive Adsorption of Zinc and Manganese by Alginate-Iron oxide-Combusted Coal Gangue Composite: Synthesizing, Characterization and Investigation. Journal of Environmental Chemical Engineering, 9, Article ID: 105003.
https://doi.org/10.1016/j.jece.2020.105003
[32] Shang, Z., Zhang, L.W., Zhao, X., Liu, S. and Li, D. (2019) Removal of Pb(II), Cd(II) and Hg(II) from Aqueous Solution by Mercapto-Modified Coal Gangue. Journal of Environmental Management, 231, 391-396.
https://doi.org/10.1016/j.jenvman.2018.10.072
[33] 范立群, 李正炎, 杨丽娜. 煤矸石的改性及其对废水中Pb2+的吸附性能研究[J]. 青岛理工大学学报, 2010, 31(3): 64-68.
[34] 刘海成, 张守花, 王现丽, 吴俊峰. 改性煤矸石处理鱼塘养殖废水的试验研究[J]. 矿业研究与开发, 2011, 31(2): 79-81.
[35] Yan, S., Wang, Q., Zhang, F., Zhang, X., Lu, Y., Gan, K., et al. (2019) Low-Cost, Green Synthesis and Adsorption Properties for Dyes of Novel Po-rous Gangue/Palygorskite Composite Microspheres. International Journal of Applied Ceramic Technology, 16, 1510-1524.
https://doi.org/10.1111/ijac.13185
[36] Zhou, L., Zhou, H., Hu, Y., Yan, S. and Yang, J. (2019) Ad-sorption Removal of Cationic Dyes from Aqueous Solutions Using Ceramic Adsorbents Prepared from Industrial Waste Coal Gangue. Journal of Environmental Management, 234, 245-252.
https://doi.org/10.1016/j.jenvman.2019.01.009
[37] Wu, Y., Du, H., Gao, Y., Liu, X., Yang, T., Zhao, L., et al. (2019) Syntheses of Four Novel Silicate-Based Nanomaterials from Coal Gangue for the Capture of CO2. Fuel, 258, Article ID: 116192.
https://doi.org/10.1016/j.fuel.2019.116192
[38] Guo, Y., Yan, K., Cui, L. and Cheng, F. (2016) Improved Extrac-tion of Alumina from Coal Gangue by Surface Mechanically Grinding Modification. Powder Technology, 302, 33-41.
https://doi.org/10.1016/j.powtec.2016.08.034
[39] Han, L., Ren, W., Wang, B., Wang, B., He, X., et al. (2019) Extraction of SiO2 and Al2O3 from Coal Gangue Activated by Supercritical Water. Fuel, 253, 1184-1192.
https://doi.org/10.1016/j.fuel.2019.05.118
[40] 徐新阳, 陈熙, 宫璇, 丛日强. 煤矸石制备聚合氯化铝的试验研究及应用[J]. 安全与环境学报, 2012, 12(4): 46-49.
[41] 张宝军, 杨建国. 利用煤矸石生产聚合氯化铝的研究[J]. 再生资源研究, 2001(4): 28-30.
[42] 刘臻. 用煤矸石制取聚合氯化铝絮凝剂[J]. 中国资源综合利用, 2010, 28(1): 18-20.
[43] 吴海滨, 薛芳斌, 郭彦霞, 程芳琴, 杨凤玲. 煤矸石制备聚合氯化铝工艺[J]. 洁净煤技术, 2018, 24(4): 141-145.