#### 期刊菜单

Research on Electromagnetic Induction Wireless Charging Technology for New Energy Vehicles
DOI: 10.12677/AEPE.2021.92011, PDF, HTML, XML, 下载: 616  浏览: 1,619  国家科技经费支持

Abstract: Due to the continuous renovation and development of new energy vehicle information technology in China, the traditional wired charging mode cannot fully meet its charging mode. This paper first compares three kinds of wireless charging technology, magnetic resonance, magnetic coupling res-onance and electromagnetic induction, and then introduces the wireless transmission technology of electromagnetic induction. The principle of power transmission is analyzed and compared, and the conclusion is that the electromagnetic induction has the advantages of miniaturization and low cost, high power transmission efficiency, no large radiation and other advantages, this technology has begun to be applied in society at home and abroad, it has a good development prospect.

1. 引言

2. 常见的无线充电技术

2.1. 磁场共振式

2.2. 磁耦合谐振式

Figure 1. Magnetic resonance circuit diagram

Figure 2. Magnetically coupled resonant

2.3. 电磁感应式

Figure 3. Electromagnetic induction circuit diagram

2.4. 三种无线充电技术的优劣

Table 1. Overview and comparison of three wireless charging technologies

3. 电磁感应无线充电技术的设计原理

Figure 4. Electromagnetic induction wireless charging technology

$\cap =\frac{{p}_{l}}{p}=\frac{{\left(wM\right)}^{2}{R}_{l}}{{z}_{2}\left[{z}_{1}{z}_{2}+{\left(wM\right)}^{2}\right]}=\frac{{\left(wM\right)}^{2}{R}_{l}}{\left({R}_{2}+{R}_{l}\right)\left[{R}_{1}\left({R}_{2}+{R}_{l}\right)+{\left(wM\right)}^{2}\right]}$

4. 无线充电技术的发展前景分析

Table 2. Experimental data sheet of low power electrical apparatus with magnetic resonance technology

Figure 5. Curve of power supply voltage vs. output power of magnetic coupling resonant Technology

5. 总结

2020年国家区级大学生创新创业训练计划立项项目“5G + 新能源汽车 + 无线充电”(项目编号：202011607008)。

 [1] 杨儒龙, 刘述喜, 李科娜, 等. 电动汽车无线充电系统的研究[J]. 汽车电器, 2018(11): 10-14. [2] 焦欣宇, 侯明心, 朱向冰. 新能源汽车无线充电技术的发展研究[J]. 信息化研究, 2019, 45(5): 74-78. [3] 熊承龙, 沈兵, 赵宁. 基于电磁感应的无线充电技术传输效率的仿真研究[J]. 电子器件, 2014(1): 131-133. https://doi.org/10.3969/j.issn.1005-9490.2014.01.031 [4] 郭言平. 无线充电的关键技术和研究[C]//安徽省汽车工程学会, 安徽省汽车行业协会. 第七届中国国际徽商大会, 第十一届中国(合肥)自主创新要素对接会, 节能与新能源汽车产业发展论坛论文集. 2011: 112-114. [5] 杨光伟. 电动汽车无线供电系统的逆变器软开关控制技术[D]: [硕士学位论文]. 重庆: 重庆大学, 2016. [6] 施建喆. 电磁感应与无线充电[J]. 科技风, 2016(21): 125. https://doi.org/10.19392/j.cnki.1671-7341.201621114 [7] 刘禹岑. 磁共振无线电能传输系统的优化研究及充电公路的探索[D]: [硕士学位论文]. 阜新: 辽宁工程技术大学, 2017. [8] 胡瑶. 磁耦合谐振式多频多负载无线电能传输系统的研究[D]: [硕士学位论文]. 南昌: 南昌大学, 2018. [9] 魏岳锐, 董亮, 杨威, 唐银池, 邹晓伟. 电磁感应式无线充电发热与电磁辐射仿真研究[J]. 电波科学学报,2020：1-7. [10] 臧红岩, 付海燕. 智能无线电动汽车充电桩研究[J]. 无线互联科技, 2016(22): 13-14. https://doi.org/10.3969/j.issn.1672-6944.2016.22.006 [11] 熊炜, 黎安铭, 任乔林, 等. 无线充电装置在电动汽车上的应用研究综述[J]. 通信电源技术, 2016, 33(3): 26-28, 32. https://doi.org/10.3969/j.issn.1009-3664.2016.03.010 [12] 高大威, 王硕, 杨福源. 电动汽车无线充电技术的研究进展[J]. 汽车安全与节能学报, 2015(4): 314-327. https://doi.org/10.3969/j.issn.1674-8484.2015.04.002