C-S-H纳米尺度结构模型研究与收缩机理研究进展
Progresses on the Nano Scale Structure Model of C-S-H and the Shrinkage Mechanism
摘要: 作为硬化水泥浆体的主要成分,对C-S-H的纳米尺度结构进行模型化研究将是水泥基材料的组成设计和性能预测重要途径。本文综述了几种经典的用于解释其行为特征的C-S-H抽象模型以及建立在电子显微形貌基础上的模型,描述了C-S-H和水之间的相互作用和水泥基材料收缩的机理。梳理了Jennings学派模型的发展过程和各模型的特点,以及这些模型对水泥浆体收缩机理的解释以及相关的数学物理模型。介绍了建立在纳米尺度C-S-H形貌特征基础上的UIUC模型。C-S-H的纳米结构模型必须和其纳米尺度的形貌特征契合,通过多种研究方法形成C-S-H在纳米尺度结构的共性、本质的特征并在此基础上形成可以解释其宏观性能的模型,将对研究和解决水泥基材料的收缩和开裂具有重要的意义。
Abstract: As the main component of harden cement paste, the modeling study on the nano scale microstructure of C-S-H is one of the key approach to the composite design and performance prediction of cement based materials. In this paper some classical abstract model of C-S-H and the model based on the electronic microscopy morphology are introduced, the interaction of C-S-H and water is described to interpret the mechanism of the shrinkage of cement based materials. The development of the models of Jennings school and the characters of those models, the interpretation of the shrinkage mechanism of cement with those models and mathematics-physics models of shrinkage are also reviewed. A UIUC model base on the nano morphology of C-S-H is introduced. A good nano scale model of C-S-H must be corres-pond to the morphology of C-S-H, so to find the comprehensive and intrinsical characters of C-S-H morphology and build a model that can interpret the macroscopical performances is very significant to study the shrinkage and cracking of cement based materials.
文章引用:沈卫国, 甘戈金, 连春明, 张文生, 叶家元, 师华. C-S-H纳米尺度结构模型研究与收缩机理研究进展[J]. 材料科学, 2012, 2(1): 1-11. http://dx.doi.org/10.12677/ms.2012.21001

参考文献

[1] D. P. Bentz, M. A. Peltz. Reducing, thermal and autogenous shrin- kage contributions to early-age cracking. ACI Materials Journal, 2008, 105(4): 414-420.
[2] H. M. Jennings. Refinements to colloid model of C-S-H in cement: CM-II. Cement and Concrete Research, 2008, 38(3): 275- 289.
[3] J. A. Andrew, J. J. Thomas and H. M. Jennings. Composition and density of nano scale calcium silicate hydrate in cement. Nature Mater, 2007, 35(6): 311-316.
[4] H. F. W. Taylor. Nano scale microstructure of C-S-H: Current status. Advanced Chemical Mater, 1993, 1(1): 38-46.
[5] H. M. Ennings. Colloid model of C-S-H and implications to the problem of creep and shrinkage. Concrete Science and Engineering, 2004, 37(1): 59-70.
[6] G. W. Scherer. Structure and properties of gels. Cement and Con- crete Research, 1999, 29(5): 1149-1157.
[7] H. F. W. Taylor. Cement chemistry (2nd Edition). London: Tho- mas Telford Ltd., 1997.
[8] H. M. Jennings, B. J. Dalgleish and P. L. Pratt. Morphological development of hydrating tricalcium silicate as examined by electron microscopy techniques. Journal of the American Ceramic So- ciety, 1981, 64(10): 567-572.
[9] S. Diamond. In the hydraulic cement pastes: Their structure and properties. Slough: Cement and Concrete Association, 1976.
[10] T. C. Powers. The physical structure and engineering properties of concrete. PCA Bulletin, 1958, 90: 1-26.
[11] I. G. Richardson. The calcium silicate hydrates. Cement and Con- crete Research, 2008, 38(2): 137-158.
[12] R. J. M. Pellenq, N. Lequeux and H. Van Damme. Engineering the bonding scheme in C-S-H: The ion-covanlent framework. Ce- ment and Concrete Research, 2008, 38(2): 159-174.
[13] J. J. Chen, J. J. Thomas, H. M. Jennings, et al. Solubility and structure of calcium silicate hydrate. Cement and Concrete Re- search, 2004, 34(9): 1499-1599.
[14] T. C. Powers, L. E. Copeland and J. S. Hayes. Permeability of portland cement paste. Journal of ACI Process, 1954, 51: 285- 298.
[15] S. Rrunaur. Tobermorite gel-the heart of concrete. American Science, 1962, 50(1): 211-229.
[16] R. F. Feldmen, P. J. Sereda. A model for hydration Portland cement as deduced from sorption-length change and mechanical properties. Mater Construction, 1968, 6: 509-520.
[17] F. H. Wittmann. The structure of harden cement paste—A basic for better understantding of the mateiral properties. P.96 in Hy- draulic cement paste: Their structure and properties. Slough: Ce- ment and Concrete Research, 1976.
[18] R. F. Feldmen, P. J. Sereda. Sorption of water on compacts of bo- ttle hydrated cement I: The sorption and length-change isotherms. Journal of Applied Chemistry, 1964, 14(2): 87-93.
[19] S. Mindess, J. F. Young and D. Darwin. Concrete (2nd Edition). Pearson Education, Inc., 2002.
[20] 格鲁霍夫斯基, 鲁洛娃, 马克苏洛夫著. 蒲心诚译. 接触硬化胶凝材料及复合材料[M]. 重庆: 重庆大学出版社, 2004: 53- 57.
[21] D. D. Double, A. Hellawell. The hydration of Portland cement. Nature, 1976, 261: 486-488.
[22] H. M. Jennings. The developing microstructure in portland cement. S. N. Ghosh, Ed., Advances in cement technology. Oxford: Pergamon Press, 1983: 349-396.
[23] J. J. Chen, J. J. Thomas, H. M. Jennings, et al. Effects of decalcification on the microstructure and surface area of cement and tricalcium silicate pastes. Cement and Concrete Research, 2004, 34(12): 2297-2307.
[24] H. M. Jennings, P. Tennis. A model for the developing microstructure in Portland cement pastes. Journal American Ceram Society, 1994, 77(12): 3161-3172.
[25] H. M. Jennings. A model for the microstructure of calcium silicate hydrate in cement paste. Cement and Concrete Research, 2000, 30(1): 101-116.
[26] M. C. G. Juenger, H. M. Jennings. Examining the relationship between the microstructure of calcium silicate hydrate and drying shrinkage of cement pastes. Cement and Concrete Research, 2002, 32(2): 289-296.
[27] F. J. Ulm, V. Matthieu and C. Bobko. Statistical Indentation techniques for hydrated nanocomposite concrete, bone and shale. Georgios constantinides. Journal of American Ceramic Society, 2007, 90(9): 2677-2692.
[28] C. Georgios, F. J. Ulm. The nanogranular nature of C-S-H. Jour- nal of the Mechanics and Physics of Solids, 2007, 55(1): 64- 90.
[29] L. Sorelli, C. Georgios, F. J. Ulm, et al. The nano-mechanical sig- nature of Ultra High Performance Concrete by statistical na- noindentation techniques. Cement and Concrete Research, 2008, 38(12): 1447-1456.
[30] J. J. Thomas, H. M. Jennings. A colloidal interpretation of chemical aging of the C-S-H gel and its effects on the properties of cement paste. Cement and Concrete Research, 2006, 36(1): 30-38.
[31] H. M. Jennings. Reply to the discussion by J. J. Beaudoin and R. Alizeadad of the paper “Refinements to colloid model of C-S-H in cement: CM-II” by H. M. Jennings. Cement and Concrete Research, 2008, 38(5): 1028-1030 .
[32] A. Nonat. The structure and stoichiometry of C-S-H. Cement and Concrete Research, 2004, 34(6): 1521-1528.
[33] D. Viehland, J. F. Li, L. J. Yuan, et al. Mesostructure of calcium silicate hydrate (C-S-H) gels in portland cement paste: Short- range ordering, nanocrystallinity, and local compositional order. Journal of American Ceramic Society, 1996, 79(7): 1731-1744.
[34] 杨南如. C-S-H 凝胶结构模型研究新进展[J]. 南京化工大学学报, 1998, 20(2): 78-85.
[35] X. Z. Zhang, W. Y. Chang, T. J. Zhang, et al. Nanostructure of calcium silicate hydrate gels in cement paste. Journal of American Ceramic Society, 2000, 83(10): 2600-2604.
[36] I. G. Richardson. Electron microscopy of cements. In: P. Barnes and J. Bensted, Eds., Structure and performance of cements (2nd Edition). London: Spon Press, 2002: 500-556.
[37] J. Russias, F. Frizon. Incorporation of aluminum into C-S-H structures: From synthesis to nanostructural characterization. Jour- nal of American Ceramic Society, 2008, 91(7): 2337-2342l.
[38] P. Mondal, S. P. Sharh and L. Marks. Characterization of cementitious materials at nano scale with a focus on mechanical properties. NSF Workshop on Nanomodification of Cementitious Materials, 2006: 38-44.
[39] D. Bonen. The nano scale microstructure of the cement paste and its porosity. The 2nd International RILEM Symposium on Advances in Concrete through Science and Engineering. RILEM, 2006: 23-27.
[40] 刘贤萍, 王培铭, 陈红霞等. 原子力显微镜在水泥熟料单矿物早期水化产物研究中的应用[J]. 硅酸盐学报, 2004, 32(3): 327-333.
[41] T. Yang, E. B. Magyari. AFM investigation of cement paste in humid air at different relative humidities. Journal of Physics D: Applied Physics, 2000, 35(1): 25-28.
[42] 沈卫国, 肖力奇, 马威等. 水化硅酸钙纳米尺度微结构的AFM研究[J]. 硅酸盐学报, 2008, 36(4): 487-493.
[43] I. G. Richardson. The nature of the hydration products in hardened cement pastes. Cement and Concrete Compos, 2000, 22: 97-133.
[44] I. G. Richardson, G. W. Groves. The structure of the calcium silicate hydrate phases present in hardened pastes of white Portland cement/blast-furnace slag blends. Journal of Materials Science, 1997, 32(12): 4793-4802.
[45] M. Vandammea, F. J. Ulm. Nanogranular origin of concrete creep. Proceeding of the National Academy of Science, 2009, 106(26): 10552-10558.
[46] J. J. Chen, L. Sorelli and F.-J. Ulm. A coupled nanoindenta-tion/ SEM-EDS study on low water/cement ratio portland cement paste: Evidence for C-S-H/Ca(OH)2 Nanocomposites. Journal of American Ceramic Society, 2010, 93(5): 1484-1493.