[1]
|
Surget, S., Khoury, M.P. and Bourdon, J.C. (2013) Uncovering the Role of p53 Splice Variants in Human Malignancy: A Clinical Perspective. OncoTargets and Therapy, 7, 57-68. https://doi.org/10.2147/OTT.S53876
|
[2]
|
Wang, Z. and Sun, Y. (2010) Targeting p53 for Novel Anticancer Therapy. Translational Oncology, 3, 1-12.
https://doi.org/10.1593/tlo.09250
|
[3]
|
Xu, J., Wang, J., Hu Y., et al. (2014) Unequal Prognostic Potentials of p53 Gain-of-Function Mutations in Human Cancers Associate with Drug-Metabolizing Activity. Cell Death & Disease, 5, e1108.
https://doi.org/10.1038/cddis.2014.75
|
[4]
|
Marcel, V., Dichtel-Danjoy, M.L., Sagne, C., et al. (2011) Biological Functions of p53 Is Forms through Evolution: Lessons from Animal and Cellular Models. Cell Death & Differentiation, 18, 1815-1824.
https://doi.org/10.1038/cdd.2011.120
|
[5]
|
Khoury, M.P. and Bourdon, J.C. (2010) The Isoforms of the p53 Protein. Cold Spring Harbor Perspectives in Biology, 2, a000927. https://doi.org/10.1101/cshperspect.a000927
|
[6]
|
Bai, L. and Zhu, W. (2006) p53: Structure, Function and Therapeutic Application. Journal of Cancer Molecules, 2, 141-153.
|
[7]
|
Chiang, M.F., Chou, P.Y., Wang, W.J., et al. (2013) Tumor Suppressor WWOX and p53 Alterations and Drug Resistance in Glioblastomas. Frontiers in Oncology, 3, Article No. 43. https://doi.org/10.3389/fonc.2013.00043
|
[8]
|
Bai, L. and Wang, S. (2014) Targeting Apoptosis Pathways for New Cancer Therapeutics. Annual Review of Medicine, 65, 139-155. https://doi.org/10.1146/annurev-med-010713-141310
|
[9]
|
Kastenhuber, E.R. and Lowe, S.W. (2017) Putting p53 in Context. Cell, 170, 1062-1078.
https://doi.org/10.1016/j.cell.2017.08.028
|
[10]
|
Watson, I.R., Takahashi, K., Futreal, P.A., et al. (2013) Emerging Patterns of Somatic Mutations in Cancer. Nature Reviews Genetics, 14, 703-718. https://doi.org/10.1038/nrg3539
|
[11]
|
Zhang, J., Ding, L., Holmfeldt, L., et al. (2012) The Genetic Basis of Early T-Cell Precursor Acute Lymphoblastic Leukaemia. Nature, 481, 157-163.
|
[12]
|
Wang, S., Zhao, Y., Bernard, D., Aguilar, A. and Kumar, S. (2012) Targeting the MDM2-p53 Protein-Protein Interaction for New Cancer Therapeutics. Topics in Medicinal Chemistry, 8, 57-80.
https://doi.org/10.1007/978-3-642-28965-1_2
|
[13]
|
Muller, P.A. and Vousden, K.H. (2013) p53 Mutations in Cancer. Nature Cell Biology, 15, 2-8.
https://doi.org/10.1038/ncb2641
|
[14]
|
Hegi, M.E., Diserens, A.C., Gorlia, T., et al. (2005) MGMT Gene Silencing and Benefit from Temozolomide in Glioblastoma. The New England Journal of Medicine, 352, 997-1003. https://doi.org/10.1056/NEJMoa043331
|
[15]
|
Willis, A., Jung, E.J., Wakefield, T., et al. (2019) Mutant p53 Exerts a Dominant Negative Effect by Preventing Wild-Type p53 from Binding to the Promoter of Its Target Genes. Oncogene, 23, 2330-2338.
https://doi.org/10.1038/sj.onc.1207396
|
[16]
|
Oren, M. and Rotter, V. (2010) Mutant p53 Gain-of-Function in Cancer. Cold Spring Harbor Perspectives in Biology, 2, a001107. https://doi.org/10.1101/cshperspect.a001107
|
[17]
|
Strano, S., Dell’Orso, S., DiAgostino, S., et al. (2007) Mutant p53: An Oncogenic Transcription Factor. Oncogene, 26, 2212-2219. https://doi.org/10.1038/sj.onc.1210296
|
[18]
|
Gaiddon, C., Lokshin, M., Ahn, et al. (2001) A Subset of Tumor-Derived Mutant Forms of p53 Down-Regulate p63 and p73 through a Direct Interaction with the p53 Core Domain. Molecular and Cellular Biology, 21, 1874-1887.
https://doi.org/10.1128/MCB.21.5.1874-1887.2001
|
[19]
|
Chang, T.C., Wentzel, E.A., Kent, O.A., et al. (2007) Transactivation of miR-34a by p53 Broadly Influences Gene Expression and Promotes Apoptosis. Molecular Cell, 26, 745-752. https://doi.org/10.1016/j.molcel.2007.05.010
|
[20]
|
Tarasov, V., Jung, P., Verdoodt, B., et al. (2007) Differential Regulation of Micro-RNAs by p53 Revealed by Massively Parallel Sequencing: Mir-34a Is a p53 Target That Induces Apoptosis and G1-Arrest. Cell Cycle, 6, 1586-1593.
https://doi.org/10.4161/cc.6.13.4436
|
[21]
|
Donzelli, S., Fontemaggi, G., Fazi, F., et al. (2012) MicroRNA-128-2 Targets the Transcriptional Repressor E2F5 Enhancing Mutant p53 Gain of Function. Cell Death & Differentiation, 19, 1038-1048.
https://doi.org/10.1038/cdd.2011.190
|
[22]
|
Masciarelli, S., Fontemaggi, G., Di Agostino, S., et al. (2014) Gain-of-Function Mutant p53 Downregulates miR-223 Contributing to Chemoresistance of Cultured Tumor Cells. Oncogene, 33, 1601-1608.
https://doi.org/10.1038/onc.2013.106
|
[23]
|
Dong, P., Karaayvaz, M., Jia, N., et al. (2013) Mutant p53 Gain-of-Function Induces Epithelial-Mesenchymal Transition through Modulation of the miR-130b-ZEB1 Axis. Oncogene, 32, 3286-3295. https://doi.org/10.1038/onc.2012.334
|
[24]
|
Wang, W., Cheng, B., Miao, L., et al. (2013) Mutant p53-R273H Gains New Function in Sustained Activation of EGFR Signaling via Suppressing miR-27a Expression. Cell Death & Disease, 4, e574.
https://doi.org/10.1038/cddis.2013.97
|
[25]
|
Neilsen, P.M., Noll, J.E., Mattiske, S., et al. (2013) Mutant p53 Drives Invasion in Breast Tumors through Up-Regulation of miR-155. Oncogene, 32, 2992-3000. https://doi.org/10.1038/onc.2012.305
|
[26]
|
Siegel, R., Naishadham, D. and Jemal, A. (2013) Cancer Sstatistics, 2013. CA: A Cancer Journal for Clinicians, 63, 11-30. https://doi.org/10.3322/caac.21166
|
[27]
|
Davidson, M.R., Gazdar, A.F. and Clarke, B.E. (2013) The Pivotal Role of Pathology in the Management of Lung Cancer. Journal of Thoracic Disease, 5, S463-S478.
|
[28]
|
VanderLaan, P.A., Rangachari, D., Mockus, S.M., et al. (2017) Mutations in TP53, PIK3CA, PTEN and Other Genes in EGFR Mutated Lung Cancers: Correlation with Clinical Outcomes. Lung Cancer, 106, 17-21.
https://doi.org/10.1016/j.lungcan.2017.01.011
|
[29]
|
Molina-Vila, M.A., Bertran-Alamillo, J., Gasco, A., et al. (2014) Nondisruptive p53 Mutations Are Associated with Shorter Survival in Patients with Advanced Non-Small Cell Lung Cancer. Clinical Cancer Research, 20, 4647-4659.
https://doi.org/10.1158/1078-0432.CCR-13-2391
|
[30]
|
Yu, H., Suzawa, K., Jordan, E.J., et al. (2018) Concurrent Alterations in EGFR-Mutant Lung Cancers Associated with Resistance to EGFR Kinase Inhibitors and Characterization of MTOR as a Mediator of Resistance. Clinical Cancer Research, 24, 3108-3118. https://doi.org/10.1158/1078-0432.CCR-17-2961
|
[31]
|
Xu, Y., Tong, X., Yan, J., et al. (2018) Short-Term Responders of Non-Small Cell Lung Cancer Patients to EGFR Tyrosine Kinase Inhibitors Display High Prevalence of TP53 Mutations and Primary Resistance Mechanisms. Translational Oncology, 11, 1364-1369. https://doi.org/10.1016/j.tranon.2018.08.010
|
[32]
|
Labbé, C., Cabanero, M., Korpanty, G.J., et al. (2017) Prognostic and Predictive Effects of TP53 Co-Mutation in Patients with EGFR-Mutated Non-Small Cell Lung Cancer (NSCLC). Lung Cancer, 111, 23-29.
https://doi.org/10.1016/j.lungcan.2017.06.014
|
[33]
|
Jiao, X., Qin, B., You, P., et al. (2018) The Prognostic Value of TP53 and Its Correlation with EGFR Mutation in Advanced Non-Small Cell Lung Cancer, an Analysis Based on cBioPortal Data Base. Lung Cancer, 123, 70-75.
https://doi.org/10.1016/j.lungcan.2018.07.003
|
[34]
|
Jin, K.R., Yun, J.C., Ryoo, B.Y., et al. (2007) p53 Enhances Gefitinib-Induced Growth Inhibition and Apoptosis by Regulation of FAS in Non-Small Cell Lung Cancer. Cancer Research, 67, 1163-1169.
https://doi.org/10.1158/0008-5472.CAN-06-2037
|
[35]
|
Kim, G., Ouzounova, M., Quraishi, A.A., et al. (2015) SOCS3-Mediated Regulation of Inflammatory Cytokines in PTEN and p53 Inactivated Triple Negative Breast Cancer Model. Oncogene, 34, 671-680.
https://doi.org/10.1038/onc.2014.4
|
[36]
|
Lee, J.K., Lee, J., Kim, S., et al. (2017) Clonal History and Genetic Predictors of Transformation into Small-Cell Carcinomas from Lung Adenocarcinomas. Journal of Clinical Oncology, 35, 3065-3074.
https://doi.org/10.1200/JCO.2016.71.9096
|
[37]
|
Zitvogel, L. and Kroemer, G. (2015) Cancer. A p53-Regulated Immune Checkpoint Relevant to Cancer. Science, 349, 476-477. https://doi.org/10.1126/science.aac8475
|
[38]
|
Jiang, Z., Liu, Z., Li, M., et al. (2018) Immunogenomics Analysis Reveals That TP53 Mutations Inhibit Tumor Immunity in Gastric Cancer. Translational Oncology, 11, 1171-1187. https://doi.org/10.1016/j.tranon.2018.07.012
|
[39]
|
Xiao, W., Du, N., Huang, T., et al. (2018) TP53 Mutation as Potential Negative Predictor for Response of anti-CTLA-4 Therapy in Metastatic Melanoma. EBio Medicine, 32, 119-124. https://doi.org/10.1016/j.ebiom.2018.05.019
|
[40]
|
Dong, Z.Y., Zhong, W.Z., Zhang, X.C., et al. (2017) Potential Predictive Value of TP53 and KRAS Mutation Status for Response to PD-1 Blockade Immunotherapy in Lung Adenocar-Cinoma. Clinical Cancer Research, 23, 3012-3024.
https://doi.org/10.1158/1078-0432.CCR-16-2554
|
[41]
|
Liu, Z., Jiang, Z., Gao, Y., et al. (2019) TP53 Mutations Promote Immunogenic Activity in Breast Cancer. Journal of Oncology, 2, 1-19. https://doi.org/10.1155/2019/5952836
|
[42]
|
Li, L., Li, M. and Wang, X. (2020) Cancer Type-Dependent Correlations between TP53 Mutations and Antitumor Immunity. DNA Repair, 24, 88. https://doi.org/10.1016/j.dnarep.2020.102785
|
[43]
|
Cortez, M.A., Ivan, C., Valdecanas, D., et al. (2016) PDL1 Regulation by p53 via miR-34. Journal of the National Cancer Institute, 108, djv303. https://doi.org/10.1093/jnci/djv303
|
[44]
|
Ku, B.M., Bae, Y.H., Koh, J., et al. (2017) Mutational Status of TP53 Defines the Efficacy of Wee1 Inhibitor AZD1775 in KRAS-Mutant Non-Small Cell Lung Cancer. Oncotarget, 8, 67526-67537.
https://doi.org/10.18632/oncotarget.18728
|
[45]
|
Lambert, J.M., Gorzov, P., Veprintsev, D.B., et al. (2009) PRIMA-1 Reactivates Mutant p53 by Covalent Binding to the Core Domain. Cancer Cell, 15, 376-388. https://doi.org/10.1016/j.ccr.2009.03.003
|
[46]
|
Peng, X., et al. (2013) APR-246/PRIMA-1MET Inhibits Thioredoxin Reductase 1 and Converts the Enzyme to a Dedicated NADPH Oxidase. Cell Death & Disease, 24, e881. https://doi.org/10.1038/cddis.2013.417
|
[47]
|
Ali, D., Mohammad, D.K., Mujahed, H., et al. (2016) Anti-Leukaemic Effects Induced by APR-246 Are Dependent on Induction of Oxidative Stress and the NFE2L2/HMOX1 Axis That Can Be Targeted by PI3K and mTOR Inhibitors in Acute Myeloid Leukaemia Cells. British Journal of Haematology, 174, 117-126. https://doi.org/10.1111/bjh.14036
|
[48]
|
Salim, K.Y., Maleki Vareki, S., Danter, W.R. and Koropatnick, J. (2016) COTI-2, a Novel Small Molecule That Is Active against Multiple Human Cancer Cell Lines in Vitro and in Vivo. Oncotarget, 7, 41363-41379.
https://doi.org/10.18632/oncotarget.9133
|
[49]
|
Lindemann, A., Patel, A.A., Silver, N.L., et al. (2019) COTI-2, A Novel Thiosemicarbazone Derivative, Exhibits Antitumor Activity in HNSCC through p53-Dependent and Independent Mechanisms. Clinical Cancer Research, 25, 5650-566. https://doi.org/10.1158/1078-0432.CCR-19-0096
|