左主干病变的评估手段及治疗研究进展
Progress in the Evaluation and Treatment of Left Main Disease
DOI: 10.12677/ACM.2022.1281066, PDF, HTML, XML, 下载: 326  浏览: 650 
作者: 冀慎利:济宁医学院临床医学院,山东 济宁;甘立军*:济宁医学院附属医院,山东 济宁
关键词: 左主干病变冠状动脉内成像经皮冠状动脉介入治疗术Left Main Coronary Artery Intracoronary Imaging Percutaneous Coronary Intervention
摘要: 左主干病变(Left main coronary artery, LMCA)是指冠状动脉左主干直径狭窄大于50%的病变。作为冠状动脉病变中死亡率最高的疾病,LMCA一直是冠状动脉疾病治疗中的重点与难点。长期以来,冠状动脉旁路移植术(Coronary artery bypass graft, CABG)是治疗左主干病变的首选方案。近年来,随着冠脉内成像技术的进步,经皮冠状动脉介入治疗术(Percutaneous coronary intervention, PCI)在左主干病变的治疗中占据一席之地。本文就国内外在左主干病变评估及治疗方面取得的进展做一综述。
Abstract: Left main coronary artery (LMCA) was defined as a coronary artery with a stenosis greater than 50% in diameter. As the disease with the highest mortality rate in coronary artery disease, LMCA has always been the focus and difficulty in the treatment of coronary artery disease. Coronary artery bypass graft (CABG) has long been the first choice for the treatment of left main artery disease. In recent years, with the development of coronary imaging technology, percutaneous coronary inter-vention (PCI) occupies a place in the treatment of left main artery disease. This article reviews the progress in the evaluation and treatment of left main disease.
文章引用:冀慎利, 甘立军. 左主干病变的评估手段及治疗研究进展[J]. 临床医学进展, 2022, 12(8): 7385-7392. https://doi.org/10.12677/ACM.2022.1281066

1. 引言

临床上有意义的左主干病变(Left main coronary artery, LMCA)是指管腔狭窄超过50%的病变,其在所有接受冠状动脉造影术(Coronary angiography, CAG)的患者中占5%~7%,在急性冠脉综合征患者中占比约24% [1]。随着我国人口老龄化程度的不断加重和心血管危险因素的增加,LMCA的发病率逐年上升。由于左主干提供左心室70%的血供,因此较一般冠状动脉病变风险更高,预后更差,病死率高。左主干闭塞引发的急性心肌梗死(Acute Myocardial Infarction, AMI)极为危急,容易导致心源性休克、严重的左心室功能不全、心室颤动、肺水肿和急性呼吸衰竭 [2]。左主干病变的治疗包括药物治疗、冠状动脉旁路移植术(Coronary artery bypass grafting, CABG)和经皮冠状动脉介入治疗(Percutaneous coronary intervention, PCI)。药物治疗临床效果差,预后不良,死亡率高。CABG是左主干病变治疗的首选方案,但一直存在创伤大、恢复慢等缺陷。PCI曾是左主干病变治疗的禁忌证,由于球囊扩张阻断血流,患者可能出现猝死。然而,随着新支架、新药物及新技术的出现,PCI在左主干病变的治疗中获得显著的成果。近年来国内外围绕LMCA的发病机制、评估手段和治疗措施方面均取得了一定的进展,本文通过综述上述进展从而为LMCA的临床诊治提供参考。

2. 左主干的解剖特点

左冠状动脉通常起于主动脉的左窦,主干很短,向左行于左心耳与肺动脉干之间,然后分为左前降支(left anterior descending artery, LAD)及左回旋支(the left circumflex artery, LCX)。来自大型血管内超声(Intravascular Ultrasound, IVUS)的研究表明,接受IVUS检查患者的左主干直径 > 4 mm是正常的,几乎50% 患者的直径 > 4.5 mm [3],平均长度10.5 ± 5.3 mm [4]。左主干的长度和直径受到几个因素的影响,如年龄、性别、种族、体重、身体表面积和心脏质量 [5]。左主干末端通常分为LAD及LCX,当它变异时会分为3支、4支或5支,被称为中间支 [6]。有研究表明,左主干的长度与其分支数量呈正相关,左主干越长,分支越多 [6]。据估计,在右冠状动脉优势循环的情况下,它通常供应 > 75%的左室心肌 [7]。在左优势冠状动脉系统中,其供应比例高达90%。与其他冠脉相比,左主干中膜的弹性纤维和平滑肌组织更多,因此可以缓冲主动脉高压血流,减少血管损伤,但也易出现负性重构和弹性回缩。在冠心病(Coronary Artery Disease, CAD)发展过程中,左主干通常发生正性重构(代偿性扩张),这种现象可以保留管腔大小。相反,左主干开口(以及LAD及LCX开口)狭窄可能是局部负性重构(代偿性收缩)的结果 [7]。根据病变部位,左主干病变一般分为:开口病变、体部病变、末端分叉病变、全长病变和闭塞病变。

3. 左主干病变影像学评估

冠状动脉造影术(Coronary Arteriography, CAG)是评估冠状动脉狭窄和PCI术中指导的标准方法 [8],然而CAG检查左主干时往往低估狭窄的程度,考虑下面几个因素:1) 左主干长度短,无合适参考血管段;2) 左主干弥漫性病变导致管腔直径缩小;3) 术者推注造影剂时,造影剂大量反流至主动脉,左主干开口显影差;4) 左主干存在解剖异常或LAD、LCX遮挡左主干导致“假性狭窄” [9]。

冠状动脉内成像(Intracoronary imaging, ICI)可以克服CAG的这些局限性,包括血管内超声(IVUS)和光学相干断层扫描(Optical coherence tomography, OCT),为术者展现内涵丰富的影像资料。ICI可用于评估冠状动脉狭窄的严重程度和斑块成分特征的诊断过程 [10]。

IVUS和OCT都可以测量左主干及其主要分支内狭窄的严重程度,与CAG相比,能更好的指导治疗。IVUS确定的小于6.0 mm2的最小管腔面积(Minimal lumen area, MLA)已被证明是LMCA血运重建的最佳截断值 [11]。与IVUS相比,OCT测量的MLA更小 [12],可能是OCT拥有更高的分辨率及使用血管内膜作为参考,而不是血管外膜,因此与IVUS引导相比,OCT可能导致术者选择更小尺寸的支架和更低的充气压力来进行支架扩张 [13]。

CAD发病的主要机制包括斑块破裂及斑块侵蚀,因此斑块形态的评估是指导病变准备的关键。研究证实,与IVUS相比,OCT可以更准确区分动脉粥样斑块,包括肪质斑块、纤维斑块及钙化斑块 [14]。因此斑块破裂、纤维帽侵蚀、斑块相关血栓及薄帽纤维动脉粥样硬化瘤(TCFA)在OCT中更容易被发现。IVUS中高回声斑块(钙化)表现为回声超过外膜及后方伴有声影 [15]。而在OCT上可以更加清楚地看到边界清楚钙结节,因为光可以穿透钙 [16]。

由于左主干为广泛心肌区域供血,一旦支架出现问题就会导致灾难性的临床后果。因此支架植入后,应再次进行ICI检查,以检测与支架相关的异常情况,确保足够的支架扩张,并评估病变覆盖范围。下面介绍几种常见的支架相关并发症:

支架膨胀不全是LMCA患者预后不良的主要预测因素。然而,关于靶向最小支架面积(MSA)没有明确的标准。由于左主干大小的种族差异,MSA应报告为远端血管直径。通过IVUS检查,左主干病变的最佳支架膨胀被定义为支架面积超过血管参考管腔面积的90% [17]。在OCT检查中有类似的结论,支架膨胀不全的最新的定义来自ILUMIEN试验计划 [18]。

支架贴壁不良是指在置入支架后,存在支架支柱与血管内膜不能完全贴合,且血流存在于支架支柱后 [19]。如果难以贴合支架,IVUS评估的轴向距离小于0.5 mm且长度小于2 mm的微小错位是可以接受的 [17]。血管内OCT可以进行高精度的贴壁不良评估。当错位小于300 μm时,支架支柱与血管内膜的间隙很会被增生内膜闭合,因此只有错位超过300 μm时才需要处理 [16],临床上术者通常采用后扩球囊扩张支架以达到良好贴壁。

组织脱垂是指动脉粥样硬化组织(斑块或血栓)通过支架网眼突入冠脉管腔 [20],它与斑块组成、支架设计和临床表现相关 [19]。IVUS检测到的组织脱垂与较差的短期结果相关(更多的急性和亚急性血栓和无复流现象),然而介入治疗后组织脱垂患者的长期结果并无明显差异 [21]。OCT检测组织脱垂的频率是IVUS的两倍,在已置入的支架中,组织脱垂的发生率高达95% [19],这意味着OCT能在没有临床影响的情况下显示更小的组织脱垂。然而,由于目前缺乏文献数据,左主干支架置入术中的组织脱垂的后果尚不清楚。

支架边缘夹层是指支架在冠脉扩张时,支架支柱会与相邻血管壁发生撕裂,从而导致夹层的发生 [22]。主要原因是术者将支架放置在不安全的位置或使用过大的支架。由于OCT的高分辨率,OCT识别夹层优于CAG和IVUS [23]。在观察性研究中,支架植入术后的冠状动脉并发症在分叉病变治疗后更为常见,并与随访期间较高的不良事件发生率有关 [24]。但是前瞻性试验(ILUMIEN III试验)中显示的主要夹层的发生率非常低,主要是因为参加这项试验的患者超过2/3为低风险患者 [18]。临床操作中,如果满足以下标准,建议进一步治疗:夹层部位的血管周长 ≥ 60度和/或长度 ≥ 3 mm [25]。

OCT波长比超声波短,能够提供比IVUS (150~200 μm)更高的分辨率(10~20 μm) [18]。其带来了很多的益处,不仅可以通过识别血栓、脂肪、钙、纤维帽厚度或夹层来进行更详细的术前血管成像,而且可以通过确定支架贴壁和支架膨胀的特征,以及通过诊断与支架相关的边缘夹层或组织突出和血栓,对手术成功进行全面评估。然而,当成像左主干时,OCT是存在明显缺陷的。OCT的组织穿透率低于IVUS。其成像需要一个没有血液的环境,通常使用单次注射造影剂来产生无血环境 [16]。左主干直径通常可以超过4毫米,因为冠脉流量高,实现无血区域可能很困难 [26]。此外,由于需要一个充分结合的引导导管来充分置换碘造影剂注射的血液,这不可避免地遮挡了左主干开口的显示。

4. 治疗策略变迁及进展

左主干病变的治疗包括药物治疗、冠状动脉旁路移植术(Coronary artery bypass grafting, CABG)和经皮冠状动脉介入治疗(Percutaneous coronary intervention, PCI)。药物治疗包括减少血栓形成,减少心肌耗氧和增加冠状动脉灌注等有益冠脉的药物,但即便使用最佳联合药物且较大剂量,临床效果仍不理想。与药物治疗相比,LMCA患者接受冠状动脉旁路移植术(CABG)和经皮冠状动脉介入治疗(PCI)后的五年死亡率的相对降幅分别为80%和79% [27]。因此当冠脉造影发现左主干狭窄 ≥ 50%时,就不推荐患者药物保守治疗,均应进行血运重建 [10]。

现代ICI和生理学指导的使用能够更详细地评估左冠状动脉病变的中间病变。基于血管内超声(IVUS)测量的最小管腔面积(MLA) > 6 mm2的血管重建延迟已被认为是安全的 [10]。在招募亚裔患者的研究中提出了较小的MLA截止值(4.5 mm2) [28]。血流储备分数(Fractional flow reserve, FFR) > 0.8是推迟中间左主干病变血运重建的临界值 [7]。在临床实践中,IVUS测量的MLA < 4.5 mm2的患者应进行血运重建,而MLA > 6 mm2的患者可行保守治疗,而MLA在4.5 mm2至6 mm2之间的患者,需要进一步评估。

对LMCA患者进行血运重建,第一步就是考虑PCI和CABG哪项更合适。欧洲心脏病学会发布的最新指南 [10],建议同时考虑解剖学和临床标准。从解剖角度来看,单纯性与低复杂性冠状动脉病变可以选择PCI,但更弥漫和复杂的冠状动脉病变(SYNTAX评分 > 22)更倾向于CABG。从临床角度来看,对于手术风险高的患者,PCI是首选的。对于存在糖尿病、低左室射血分数和双重抗血小板治禁忌症的患者还是考虑CABG。

多项大型随机试验(SYNTAX、PRECOMBAT、EXCEL、NOBLE) [29] [30] [31] [32] 证明了在主要不良心脑血管事件(MACCE)的合并主要终点方面,PCI与CABG相比并不逊色,但冠脉介入治疗后靶血管重建率过高(靶病变血管重建与死亡率最密切相关) [33]。为了减少PCI术后靶血管重建率,合适的介入策略还是关键的。

左主干病变部位不同处理方式也不同。开口病变的治疗要点是支架的准确定位、病变完全覆盖和支架的良好支撑。体部病变相对容易,但要注意支架长度的选择,尽量不要影响开口及末端病变。末端病变因为涉及到分叉病变,是最为复杂的。分叉病变有多种分型方式,Medina分型因为相对简洁、便于记忆,所以临床应用广泛。但其仅描述了分叉病变的位置,忽略了决定介入术式及预后的其他关键信息,如分叉角度、分支病变长度、血管直径等。第一个数字反映近端主干血管有无狭窄(1 = 有,0 = 无);第二个数字反映在远端主要血管中是否有狭窄,第三个数字反映侧支开口有无狭窄。Medina 1.1.1、1.0.1和0.1.1级为真正的分叉病变 [34]。EFINITION标准能够有效区分复杂和简单分叉病变,指导分叉病变治疗策略的制定,主要关注的是分支病变长度及狭窄程度 [35]。SYNTAX评分是单纯的解剖学评分,而SYNTAX II评分预测左主干病变血运重建后死亡率的能力更强。它评估无保护左主干病变时分析多项临床因素,包括:年龄、性别、体重指数、肌酐清除率、左室射血分数、吸烟史、是否合并慢性阻塞性肺疾病和周围血管病等因素 [36]。

对于大部分简单病变,单支架技术就足够了,但遇到复杂病变,还是考虑双支架技术。支架置入术的策略取决于涉及侧支的疾病程度。为了更好的左主干支架置入策略,简单型病变是指侧支直径狭窄小于70%且长度小于10 mm的病变,可通过单支架策略进行治疗。相对而言,复杂型病变的侧支狭窄大于70%且长度大于10 mm。一个简单型病变当存在下面6个指标中的2个就可以转变为复杂型病变,这些指标包括钙化程度、分叉角度、参考血管直径、血栓及主支血管病变的长度 [37]。

5. 单支架置入术

对于简单的LMCA,应该使用临时单支架策略。随机研究表明,临时单支架置入术优于双支架置入术 [38]。在LMCA介入治疗中,使用单一支架从左冠状动脉进入LAD是最常用的方法 [39]。对于病变长度小于5 mm、左主干开口部狭窄小于50%、右冠优势型冠脉系统、或左主干直径小于2.0 mm的病变,宜采用临时单支架置入术。如果LAD的开口没有病变,并且LCX病变较重时,则可以从左主干向LCX进行临时的单支架入路(也称为倒置临时入路)。临床中应用单支架置入术,要注意以下要点:1) 要选择适宜的导引导管。当操作复杂时,需要置入多根导丝及球囊时,要选择管径更大的指引导管。导引导管提供的支撑力也是介入手术顺利进行的必要条件,长头导引导管可以带来更强力的支撑。2) 分支均应插入导丝。导丝应先进入病变更重的分支,为避免两根导丝相互缠绕,应在固定第一根导丝的同时插入第二根导丝。当一支血管闭塞时,侧支导丝可以起到保护作用,特别是当侧支开口存在 > 50%的病变时 [40]。侧支导丝还有助于改变分叉角度。当导丝难以进入侧支时,可偏转和成角的微导管可以提供帮助。3) KIO (Keep It Open)技术,即保护边支技术,特别适用于边支细小的分叉病变。边支导丝是第一重保护,边支不进行预扩张是第二重保护,不行对吻球囊扩张是第三重保护。4) KBI (Kissing balloon inflation)技术,即对吻球囊扩张技术,特别适用于边支粗大,在主支释放支架后,边支狭窄严重的情况。5) POT (Proximal Optimal Technique)技术,即近端优化技术。即使用一个直径与近端主支直径之比为1:1的短球囊改善近端主支支架膨胀及贴壁状况 [41]。

6. 双支架置入术

相较于单支架置入术,双支架技术更为成熟,目前常用的技术包括T支架技术、Crush技术及Culotte技术。下面简要介绍各种技术的特点。

T支架技术主要用来处理分叉角度 > 70˚的分叉病变,包括经典T支架术和改良T支架术,这里重点介绍改良T支架术,即TAP (T-stenting and small protrusion)技术。其最初用于单支架策略中优化侧支,因为操作简易,操作者逐渐将其作为双支架置入策略的首选技术 [42]。根据远端血管的直径,首先在主支置入第一个支架,然后进行POT。收回侧支导丝,侧支导丝再通过主支支架网眼重新进入侧支,并在侧支内植入第二个支架,同时最小限度地突出主支。最后同时扩张主支和侧支支架。优点是操作简单,成功率高,费用低。缺点是分支再狭窄率及血运重建率高。

经典Crush技术为预防主支支架置入后并发分支急性闭塞而设计,能保证血管的及时开通,减少心脏缺血时间,安全性高。与T支架技术相比,经典Crush术的主要缺陷是导丝和球囊难以通过分支开口的支架网眼,容易造成支架内再狭窄及血栓的发生。DK Crush支架技术在Crush技术的基础上加以完善,已成为复杂病变的首选双支架左主干技术 [43]。该技术的重要性在最新的2018年欧洲心脏病学会(ESC)心肌血管重建指南中得到了反映,在该指南中,相对于T支架技术,DK Crush技术获得了II b级推荐,用于真正的左主干分叉病变。DK Crush技术的关键是1) 近端导丝复通;2) 2个支架的应用;3) 2次KBI;4) 2次POT。

由于再狭窄率较高,最初的金属裸支架时代的Culotte技术已被废弃。自药物洗脱支架问世以来,Culotte技术又重新流行起来。经典Culotte技术经历了先于主支置入支架转换为先于分支置入支架的过程。因为经典Culotte技术中主支近端内重叠的支架丝过多、新成立的金属分叉嵴较长,以及支架丝和金属分叉嵴之间较大空隙等问题,使其适应证窄、疗效差。新型Culotte技术进行了改良:尽量缩短支架重叠长度,甚至单环重叠;置入一个支架后增加1次KBI。这些改良拓宽了Culotte术式的适应证,使其可用于主支和分支直径相差较大(≥1.0 mm)的病变 [44]。与Crush技术相比操作更简易,与T支架技术相比分支再狭窄率更低。缺点是第一枚支架释放后容易导致成角较小的血管急性闭塞。

7. 总结

左主干病变风险高、预后差、病死率高,一直是冠脉治疗中的重点和难点。其管径大,长度短,冠脉造影难以评估病变程度。而IVUS和OCT则可以评估病变程度并检测支架置入后相关并发症,极大的改善预后。CABG的地位也因此受到了冲击,目前SYNTAX评分低的病变推荐PCI。PCI处理左主干病变仍存在多次血运重建的问题。对于简单病变,推荐单支架置入策略,同时注意各种优化技术。对于复杂病变,双支架策略收益更大,但术式很多,需要术者根据病变特点选择合适术式。为了降低左主干病变患者的风险,改善预后,增加存活率,我们仍需不断推动冠脉内成像技术及支架置入技术的进步。

NOTES

*通讯作者。

参考文献

[1] Li, J., Patel, S.M., Parikh, M.A., et al. (2016) Unprotected Left Main Disease: Indications and Optimal Strategies for Percutaneous Intervention. Current Treatment Options in Cardiovascular Medicine, 18, 19.
https://doi.org/10.1007/s11936-016-0441-2
[2] D’Angelo, C., Zagnoni, S., Gallo, P., et al. (2018) Electrocardio-graphic Changes in Patients with Acute Myocardial Infarction Caused by Left Main Trunk Occlusion. Journal of Cardi-ovascular Medicine (Hagerstown), 19, 439-445.
https://doi.org/10.2459/JCM.0000000000000684
[3] Chatterjee, A., Leesar, M.A. and Hillegass, W.B. (2019) In-travascular Ultrasound of Normal Left Main Arteries: Insights for Stent Optimization and Standardization. Catheteriza-tion and Cardiovascular Interventions, 93, 239-240.
https://doi.org/10.1002/ccd.28077
[4] Medrano-Gracia, P., Ormiston, J., Webster, M., et al. (2016) A Computa-tional Atlas of Normal Coronary Artery Anatomy. EuroIntervention, 12, 845-854.
https://doi.org/10.4244/EIJV12I7A139
[5] Dodge, J.J., Brown, B.G., Bolson, E.L., et al. (1992) Lumen Diameter of Normal Human Coronary Arteries. Influence of Age, Sex, Anatomic Variation, and Left Ventricular Hypertrophy or Dilation. Circulation, 86, 232-246.
https://doi.org/10.1161/01.CIR.86.1.232
[6] Pereira, D.C., Dantas, D.L., Silva, P.R., et al. (2019) Anatomical Study of Length and Branching Pattern of Main Trunk of the Left Coronary Artery. Morphologie, 103, 17-23.
https://doi.org/10.1016/j.morpho.2018.10.002
[7] Burzotta, F., Lassen, J.F., Banning, A.P., et al. (2018) Percuta-neous Coronary Intervention in Left Main Coronary Artery Disease: The 13th Consensus Document from the European Bifurcation Club. Euro Intervention, 14, 112-120.
https://doi.org/10.4244/EIJ-D-18-00357
[8] Lee, C.H. and Hur, S.H. (2019) Optimization of Percutaneous Coro-nary Intervention Using Optical Coherence Tomography. Korean Circulation Journal, 49, 771-793.
https://doi.org/10.4070/kcj.2019.0198
[9] 张晓萍, 马琳, 周桂玲, 等. 经皮冠状动脉介入术治疗老年冠心病的预后及其影响因素[J]. 中国循证心血管医学杂志, 2017, 9(7): 848-850.
[10] Neumann, F.J., Sousa-Uva, M., Ahlsson, A., et al. (2019) 2018 ESC/EACTS Guidelines on Myocardial Revascularization. European Heart Journal, 40, 87-165.
https://doi.org/10.1093/eurheartj/ehy394
[11] Tomaniak, M., Masdjedi, K., van Zandvoort, L.J., et al. (2021) Correlation between 3D-QCA Based FFR and Quantitative Lumen Assessment by IVUS for Left Main Coronary Artery Stenoses. Catheterization and Cardiovascular Interventions, 97, E495-E501.
https://doi.org/10.1002/ccd.29151
[12] Fujino, Y., Bezerra, H.G., Attizzani, G.F., et al. (2013) Frequency-Domain Optical Coherence Tomography Assessment of Unprotected Left Main Coronary Artery Disease—A Comparison with Intravascular Ultrasound. Catheterization and Cardiovascular Interventions, 82, E173-E183.
https://doi.org/10.1002/ccd.24843
[13] Kubo, T., Shinke, T., Okamura, T., et al. (2017) Optical Frequency Domain Imaging vs. Intravascular Ultrasound in Percutaneous Coronary Intervention (Opinion Trial): One-Year Angiographic and Clinical Results. European Heart Journal, 38, 3139-3147.
https://doi.org/10.1093/eurheartj/ehx351
[14] Shimamura, K., Kubo, T. and Akasaka, T. (2021) Evaluation of Cor-onary Plaques and Atherosclerosis Using Optical Coherence Tomography. Expert Review of Cardiovascular Therapy, 19, 379-386.
https://doi.org/10.1080/14779072.2021.1914588
[15] 王伟民, 霍勇, 葛均波. 冠状动脉钙化病变诊治中国专家共识(2021版) [J]. 中国介入心脏病学杂志, 2021, 29(5): 251-259.
[16] Onuma, Y., Katagiri, Y., Burzotta, F., et al. (2019) Joint Consensus on the Use of OCT in Coronary Bifurcation Lesions by the European and Japanese Bifurcation Clubs. EuroIntervention, 14, e1568-e1577.
https://doi.org/10.4244/EIJ-D-18-00391
[17] de la Torre, H.J., Garcia, C.T., Baz, A.J., et al. (2020) Outcomes of Predefined Optimisation Criteria for Intravascular Ultrasound Guidance of Left Main Stenting. EuroIntervention, 16, 210-217.
https://doi.org/10.4244/EIJ-D-19-01057
[18] Ali, Z.A., Maehara, A., Généreux, P., et al. (2016) Optical Coherence Tomography Compared with Intravascular Ultrasound and with Angiography to Guide Coronary Stent Im-plantation (ILUMIEN III: OPTIMIZE PCI): A Randomised Controlled Trial. The Lancet, 388, 2618-2628.
https://doi.org/10.1016/S0140-6736(16)31922-5
[19] Ha, F.J., Giblett, J.P., Nerlekar, N., et al. (2017) Optical Co-herence Tomography Guided Percutaneous Coronary Intervention. Heart, Lung and Circulation, 26, 1267-1276.
https://doi.org/10.1016/j.hlc.2017.07.003
[20] Porchetta, N., Russo, D., Benedetto, D., et al. (2021) Plaque Pro-lapse after Stent Implantation in Ectasiant Coronary Artery Atherosclerotic Disease and Large Plaque Burden. Journal of Cardiovascular Echography, 31, 181-183.
[21] Hong, Y.J., Jeong, M.H., Choi, Y.H., et al. (2013) Impact of Tissue Prolapse after Stent Implantation on Short- and Long-Term Clinical Outcomes in Patients with Acute Myocardial Infarc-tion: An Intravascular Ultrasound Analysis. International Journal of Cardiology, 166, 646-651.
https://doi.org/10.1016/j.ijcard.2011.11.092
[22] Goldstein, J.A. (2015) Stent Edge Dissection: Depth of Injury and Adverse Outcome. Catheterization and Cardiovascular Interventions, 86, 247-248.
https://doi.org/10.1002/ccd.26087
[23] Maehara, A., Ben-Yehuda, O., Ali, Z., et al. (2015) Comparison of Stent Expansion Guided by Optical Coherence Tomography versus Intravascular Ultrasound: The ILUMIEN II Study (Obser-vational Study of Optical Coherence Tomography [OCT] in Patients Undergoing Fractional Flow Reserve [FFR] and Percutaneous Coronary Intervention). JACC: Cardiovascular Interventions, 8, 1704-1714.
https://doi.org/10.1016/j.jcin.2015.07.024
[24] Prati, F., Romagnoli, E., Burzotta, F., et al. (2015) Clinical Impact of OCT Findings during PCI: The CLI-OPCI II Study. JACC: Cardiovascular Imaging, 8, 1297-1305.
https://doi.org/10.1016/j.jcmg.2015.08.013
[25] Kobayashi, N., Mintz, G.S., Witzenbichler, B., et al. (2016) Prev-alence, Features, and Prognostic Importance of Edge Dissection after Drug-Eluting Stent Implantation: An ADAPT-DES Intravascular Ultrasound Substudy. Circulation: Cardiovascular Interventions, 9, e3553.
https://doi.org/10.1161/CIRCINTERVENTIONS.115.003553
[26] Nogic, J., Prosser, H., O’Brien, J., et al. (2020) The Assessment of Intermediate Coronary Lesions Using Intracoronary Imaging. Cardiovascular Diagnosis and Thera-py, 10, 1445-1460.
https://doi.org/10.21037/cdt-20-226
[27] Shah, R., Morsy, M.S., Weiman, D.S., et al. (2017) Meta-Analysis Comparing Coronary Artery Bypass Grafting to Drug-Eluting Stents and to Medical Therapy Alone for Left Main Coronary Artery Disease. American Journal of Cardiology, 120, 63-68.
https://doi.org/10.1016/j.amjcard.2017.03.260
[28] Park, S.J., Ahn, J.M., Kang, S.J., et al. (2014) Intravascular Ultrasound-Derived Minimal Lumen Area Criteria for Functionally Significant Left Main Coronary Artery Stenosis. JACC: Cardiovascular Interventions, 7, 868-874.
https://doi.org/10.1016/j.jcin.2014.02.015
[29] Thuijs, D., Kappetein, A.P., Serruys, P.W., et al. (2019) Percutane-ous Coronary Intervention versus Coronary Artery Bypass Grafting in Patients with Three-Vessel or Left Main Coronary Artery Disease: 10-Year Follow-Up of the Multicentre Randomised Controlled SYNTAX Trial. The Lancet, 394, 1325-1334.
https://doi.org/10.1016/S0140-6736(19)31997-X
[30] Sabatine, M., Bergmark, B.A., Murphy, S.A., et al. (2021) Percutaneous Coronary Intervention with Drug-Eluting Stents versus Coronary Artery Bypass Grafting in Left Main Coronary Artery Disease: An Individual Patient Data Meta-Analysis. The Lancet, 398, 2247-2257.
https://doi.org/10.1016/S0140-6736(21)02334-5
[31] Thuijs, D., Head, S.J., Stone, G.W., et al. (2019) Outcomes Following Surgical Revascularization with Single versus Bilateral Internal Thoracic Arterial Grafts in Patients with Left Main Coronary Artery Disease Undergoing Coronary Artery Bypass Grafting: Insights from the EXCEL Trial. Europe-an Journal of Cardio-Thoracic Surgery, 55, 501-510.
https://doi.org/10.1093/ejcts/ezy291
[32] Holm, N.R., Mäkikallio, T., Lindsay, M.M., et al. (2020) Percutaneous Coronary Angioplasty versus Coronary Artery Bypass Grafting in the Treatment of Unprotected Left Main Stenosis: Updated 5-Year Outcomes from the Randomised, Non-Inferiority NOBLE Trial. The Lancet, 395, 191-199.
https://doi.org/10.1016/S0140-6736(19)32972-1
[33] Giustino, G., Serruys, P.W., Sabik, J.R., et al. (2020) Mor-tality after Repeat Revascularization Following PCI or CABG for Left Main Disease: The EXCEL Trial. JACC: Cardio-vascular Interventions, 13, 375-387.
https://doi.org/10.1016/j.jcin.2019.09.019
[34] Suleiman, S., Coughlan, J.J., Touma, G., et al. (2021) Contempo-rary Management of Isolated Ostial Side Branch Disease: An Evidence-Based Approach to Medina 001 Bifurcations. In-terventional Cardiology, 16, e6.
https://doi.org/10.15420/icr.2020.30
[35] Kan, J., Zhang, J.J., Sheiban, I., et al. (2022) 3-Year Outcomes after 2-Stent with Provisional Stenting for Complex Bifurcation Lesions Defined by Definition Criteria. JACC: Cardiovascu-lar Interventions, 15, 1310-1320.
https://doi.org/10.1016/j.jcin.2022.05.026
[36] Takahashi, K., Serruys, P.W., Fuster, V., et al. (2020) Redevelop-ment and Validation of the SYNTAX Score II to Individualise Decision Making between Percutaneous and Surgical Re-vascularisation in Patients with Complex Coronary Artery Disease: Secondary Analysis of the Multicentre Randomised Controlled SYNTAXES Trial with External Cohort Validation. The Lancet, 396, 1399-1412.
https://doi.org/10.1016/S0140-6736(20)32114-0
[37] Chen, S.L., Sheiban, I., Xu, B., et al. (2014) Impact of the Complexity of Bifurcation Lesions Treated with Drug- Eluting Stents: The Definition Study (Definitions and Impact of Complex Bifurcation Lesions on Clinical Outcomes after Percutaneous Coronary Intervention Using Drug-Eluting Stents). JACC: Cardiovascular Interventions, 7, 1266- 1276.
[38] D’Ascenzo, F., Iannaccone, M., Giordana, F., et al. (2016) Provisional vs. Two-Stent Technique for Unprotected Left Main Coronary Artery Disease after Ten Years Follow Up: A Propensity Matched Analysis. International Journal of Cardiology, 211, 37-42.
https://doi.org/10.1016/j.ijcard.2016.02.136
[39] Stone, G.W., Sabik, J.F., Serruys, P.W., et al. (2016) Everoli-mus-Eluting Stents or Bypass Surgery for Left Main Coronary Artery Disease. The New England Journal of Medicine, 375, 2223-2235.
https://doi.org/10.1056/NEJMoa1610227
[40] Hahn, J.Y., Chun, W.J., Kim, J.H., et al. (2013) Predictors and Outcomes of Side Branch Occlusion after Main Vessel Stenting in Coronary Bifurcation Lesions: Results from the COBIS II Registry (Coronary Bifurcation Stenting). JACC: Journal of the American College of Cardiology, 62, 1654-1659.
https://doi.org/10.1016/j.jacc.2013.07.041
[41] Finet, G., Derimay, F., Motreff, P., et al. (2015) Com-parative Analysis of Sequential Proximal Optimizing Technique Versus Kissing Balloon Inflation Technique in Provi-sional Bifurcation Stenting: Fractal Coronary Bifurcation Bench Test. JACC: Cardiovascular Interventions, 8, 1308-1317.
https://doi.org/10.1016/j.jcin.2015.05.016
[42] Burzotta, F., Džavík, V., Ferenc, M., et al. (2015) Technical As-pects of the T and Small Protrusion (TAP) Technique. EuroIntervention, 11, V91-V95.
https://doi.org/10.4244/EIJV11SVA20
[43] Chen, S.L., Xu, B., Han, Y.L., et al. (2015) Clinical Outcome after DK Crush versus Culotte Stenting of Distal Left Main Bifurcation Lesions: The 3-Year Follow-Up Results of the DKCRUSH-III Study. JACC: Cardiovascular Interventions, 8, 1335-1342.
https://doi.org/10.1016/j.jcin.2015.05.017
[44] Chen, L., Fan, L., Luo, Y., et al. (2016) Ex Vivo Monoring Tech-nique Simplifies Culotte Stenting for Treatment of True Bifurcation Lesions: Insights from Bench Testing and Clinical Application. Cardiology Journal, 23, 673-684.
https://doi.org/10.5603/CJ.a2016.0054