具弧容量约束交通均衡流的算法研究
Research on the Algorithm of Traffi Equilibrium Flow with Arc Capacity Constraint
DOI: 10.12677/AAM.2022.119653, PDF, HTML, 下载: 288  浏览: 391 
作者: 周大琼:重庆城市职业学院,重庆
关键词: 具弧容量约束饱和路径Beckmann 公式算法均衡流Arc Capacity Constraint Saturated Path Beckmann Formula Algorithm Equilibrium Flow
摘要: 本文在介绍Wardrop经典交通均衡原理的基础上,重点介绍了具弧容量约束的交通均衡原理,并利用Beckmann 公式,把具弧容量约束交通均衡流的计算问题转化成数学规划问题,在此基础上构造了具弧容量约束交通均衡流的算法,同时举例对算法进行进一步说明。
Abstract: Based on the introduction of Wardrops classical traffic equilibrium principle, this paper focuses on the principle of traffic equilibrium flow with arc capacity constraint, and makes use of Beckmann formula, the calculation problem of traffic equilibrium flow with arc capacity constraint is transformed into a mathematical programming problem, and the algorithm of traffic equilibrium flow with arc capacity constraint is constructed.
文章引用:周大琼. 具弧容量约束交通均衡流的算法研究[J]. 应用数学进展, 2022, 11(9): 6192-6198. https://doi.org/10.12677/AAM.2022.119653

参考文献

[1] Wardrop, J. (1952) Some Theoretical Aspects of Road Traffic Research. Proceedings of the Institute of Civil Engineers, Part II, 1, 325-378.
https://doi.org/10.1680/ipeds.1952.11259
[2] Beckmann, M.J., McGuire, C.B. and Winsten, C.B. (1956) Studies in the Economics of Trans- portation. Yale University Press, New Haven.
[3] Lin, Z. (2010) The Study of Traffic Equilibrium Problems with Capacity Constraints of Arcs. Nonlinear Analysis: Real World Applications, 11, 2280-2284.
https://doi.org/10.1016/j.nonrwa.2009.07.002
[4] Lin, Z. (2010) On Existence of Vector Equilibrium Flows with Capacity Constraints of Arcs. Nonlinear Analysis: Theory, Methods and Applications, 72, 2076-2079.
https://doi.org/10.1016/j.na.2009.10.007
[5] Chen, A., Zhou, Z. and Xu, X.D. (2012) A Self-Adaptive Gradient Projection Algorithm for the Nonadditive Traffic Equilibrium Problem. Computers and Operations Research, 39, 127-138.
https://doi.org/10.1016/j.cor.2011.02.018
[6] Xu, Y.D. and Li, S.J. (2013) Optimality Conditions for Generalized Ky Fan Quasi-Inequalities with Applications. Journal of Optimization Theory and Applications, 157, 663-684.
https://doi.org/10.1007/s10957-012-0242-z
[7] Xu, Y.D. and Li, S.J. (2014) Vector Network Equilibrium Problems with Capacity Constraints of Arcs and Nonlinear Scalarization Methods. Applicable Analysis, 93, 2199-2210.
https://doi.org/10.1080/00036811.2013.875160
[8] Luc, D.T. and Phuong, T.T.T. (2016) Equilibrium in Multi-Criteria Transportation Networks. Journal of Optimization Theory Applications, 169, 116-147.
https://doi.org/10.1007/s10957-016-0876-3
[9] Zhi, L. (2015) An Algorithm for Traffic Equilibrium Flow with Capacity Constraints of Arcs. Journal of Transportation Technologies, 5, 240-246.
https://doi.org/10.4236/jtts.2015.54022
[10] Chiou, S.W. (2010) An Efficient Algorithm for Computing Traffic Equilibria Using TRANSYT Model. Applied Mathematical Modelling, 34, 3390-3399.
https://doi.org/10.1016/j.apm.2010.02.028
[11] Xu, M., Chen, A., Qu, Y. and Gao, Z. (2011) A Semismooth Newton Method for Traffic Equilibrium Problem with a General Nonadditive Route Cost. Applied Mathematical Modelling, 35, 3048-3062.
https://doi.org/10.1016/j.apm.2010.12.021