|
[1]
|
张泉, 刘熙俊, 罗俊. 高熵合金在电解水催化中的应用研究[J]. 中国有色金属学报, 2021, 3x: 1-19.
|
|
[2]
|
Marques, F., Balcerzak, M., Winkelmann, F., Zepon, G. and Felderhoff, M. (2021) Review and Outlook on High-Entropy Alloys for Hydrogen Storage. Energy & Environmental Science, 14, 5191-5227. [Google Scholar] [CrossRef]
|
|
[3]
|
Jena, P. (2011) Materials for Hydrogen Storage: Past, Present, and Fu-ture. The Journal of Physical Chemistry Letters, 2, 206-211. [Google Scholar] [CrossRef]
|
|
[4]
|
Yuan, X., Wu, Y., Jiang, B., Wu, Z., Tao, Z., Lu, X. and Zhang, Q. (2020) Interface Engineering of Silver-Based Heterostructures for CO2 Reduction Reaction. ACS Applied Materials & Interfaces, 12, 56642-56649. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Dai, W., Lu, T. and Pan, Y. (2019) Novel and Promising Electrocata-lyst for Oxygen Evolution Reaction Based on MnFeCoNi High Entropy Alloy. Journal of Power Sources, 430, 104-111. [Google Scholar] [CrossRef]
|
|
[6]
|
Wang, H. F., Chen, L., Pang, H., Kaskel, S. and Xu, Q. (2020) MOF-Derived Electrocatalysts for Oxygen Reduction, Oxygen Evolution and Hydrogen Evolution Reactions. Chemical Society Reviews, 49, 1414-1448. [Google Scholar] [CrossRef]
|
|
[7]
|
Vij, V., Sultan, S., Harzandi, A.M., Meena, A., Tiwari, J.N., Lee, W.G. and Kim, K.S. (2017) Nickel-Based Electrocatalysts for Energy-Related Applications: Oxygen Reduction, Oxygen Evo-lution, and Hydrogen Evolution Reactions. ACS Catalysis, 7, 7196-7225. [Google Scholar] [CrossRef]
|
|
[8]
|
Zhang, L., Xiao, J., Wang, H. and Shao, M. (2017) Carbon-Based Electrocatalysts for Hydrogen and Oxygen Evolution Reactions. ACS Catalysis, 7, 7855-7865. [Google Scholar] [CrossRef]
|
|
[9]
|
Jia, Y., Xue, Z., Li, Y. and Li, G. (2021) Recent Progress of Metal Organic Frameworks-Based Electrocatalysts for Hydrogen Evolution, Oxygen Evolution, and Oxygen Reduction Reac-tion. Energy & Environmental Materials, 1-19. [Google Scholar] [CrossRef]
|
|
[10]
|
Sung, M. and Kim, J. (2018) Oxygen Evolution Reaction on Pt Sphere and Ir-Modified Pt Sphere Electrodes with Porous Structures. International Journal of Hydrogen Energy, 43, 2130-2138. [Google Scholar] [CrossRef]
|
|
[11]
|
Bao, M., Amiinu, I.S., Peng, T., Li, W., Liu, S., Wang, Z. and Mu, S. (2018) Surface Evolution of PtCu Alloy Shell over Pd Nanocrystals Leads to Superior Hydrogen Evolution and Oxygen Reduction Reactions. ACS Energy Letters, 3, 940-945. [Google Scholar] [CrossRef]
|
|
[12]
|
Lin, Z., Liu, S., Liu, Y., Liu, Z., Zhang, S., Zhang, X. and Tang, Z. (2021) Rational Design of Ru Aerogel and RuCo Aerogels with Abundant Oxygen Vacancies for Hydrogen Evolution Reaction, Oxygen Evolution Reaction, and Overall Water Splitting. Journal of Power Sources, 514, Article ID: 230600. [Google Scholar] [CrossRef]
|
|
[13]
|
Kim, M., Park, J., Wang, M., Wang, Q., Kim, M.J., Kim, J.Y. and Lee, S.W. (2022) Role of Surface Steps in Activation of Surface Oxygen Sites on Ir Nanocrystals for Oxygen Evo-lution Reaction in Acidic Media. Applied Catalysis B: Environmental, 302, Article ID: 120834. [Google Scholar] [CrossRef]
|
|
[14]
|
Zhang, Y., Wang, D. and Wang, S. (2022) High-Entropy Alloys for Electroca-talysis: Design, Characterization, and Applications. Small, 18, Article ID: 2104339. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Li, H., Lai, J., Li, Z. and Wang, L. (2021) Multi-Sites Electrocatalysis in High-Entropy Alloys. Advanced Functional Materials, 31, Article ID: 2106715. [Google Scholar] [CrossRef]
|
|
[16]
|
Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T. and Chang, S.Y. (2004) Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials, 6, 299-303. [Google Scholar] [CrossRef]
|
|
[17]
|
兰利娟, 顾莹莹, 濮天姣, 朱和国. 高熵合金性能的研究现状[J]. 冶金工程, 2018, 5(1): 17-24.
|
|
[18]
|
张祎梣, 杨颜如, 李嘉雯, 张继峰, 武智意, 朱和国. 高熵合金制备与力学性能研究进展[J]. 材料科学, 2021, 11(3): 185-193.
|
|
[19]
|
Cantor, B. (2014) Multicomponent and High Entropy Alloys. En-tropy, 16, 4749-4768. [Google Scholar] [CrossRef]
|
|
[20]
|
Cantor, B., Chang, I.T.H., Knight, P. and Vincent, A.J.B. (2004) Micro-structural Development in Equiatomic Multicomponent Alloys. Materials Science and Engineering: A, 375, 213-218. [Google Scholar] [CrossRef]
|
|
[21]
|
张扬, 邹芹, 李艳国, 李园园, 徐江波, 王明智. 高熵氧化物的研究进展与展望[J]. 金刚石与磨料磨具工程, 2022, 42(1): 30-41.
|
|
[22]
|
何胜豪, 程芳, 夏松钦, 刘薇, 郭冰, 郭驾宇, 沈杭燕. 高熵合金的制备及性能[J]. 热加工工艺, 2022(18): 22-29.
|
|
[23]
|
梅雨, 陈军, 邓文韬, 邹国强, 侯红帅, 纪效波. 高熵电化学储能材料的研究进展与新机遇[J]. 硅酸盐学报, 2022, 50(1): 174-184.
|
|
[24]
|
Park, J., Lee, S., Kim, H.E., Cho, A., Kim, S., Ye, Y. and Lee, J. (2019) Investigation of the Support Effect in Atomically Dis-persed Pt on WO3−x for Utilization of Pt in the Hydrogen Evolution Reaction. Angewandte Chemie International Edition, 58, 16038-16042. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Hong, Y.R., Dutta, S., Jang, S.W., Ngome Okello, O.F., Im, H., Choi, S.Y. and Lee, I.S. (2022) Crystal Facet-Manipulated 2D Pt Nanodendrites to Achieve an Intimate Heterointerface for Hydrogen Evolution Reactions. Journal of the American Chemical Society, 144, 9033-9043. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Xin, Y., Li, S., Qian, Y., Zhu, W., Yuan, H., Jiang, P. and Wang, L. (2020) High-Entropy Alloys as a Platform for Catalysis: Progress, Challenges, and Opportunities. ACS Catalysis, 10, 11280-11306. [Google Scholar] [CrossRef]
|
|
[27]
|
Nørskov, J.K., Bligaard, T., Logadottir, A., Kitchin, J.R., Chen, J.G., Pandelov, S. and Stimming, U. (2005) Trends in the Exchange Current for Hydrogen Evolution. Journal of the Electro-chemical Society, 152, J23-J26. [Google Scholar] [CrossRef]
|
|
[28]
|
Seh, Z.W., Kibsgaard, J., Dickens, C.F., Chorkendorff, I.B., Nørskov, J.K. and Jaramillo, T.F. (2017) Combining Theory and Experiment in Electrocatalysis: Insights into Materials Design. Science, 355, eaad4998. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Mosallanezhad, A., Wei, C., Koudakan, P.A., Fang, Y., Niu, S., Bian, Z. and Wang, G. (2022) Interfacial Synergies between Single-Atomic Pt and CoS for Enhancing Hydrogen Evolution Reaction Catalysis. Applied Catalysis B: Environmental, 315, Article ID: 121534. [Google Scholar] [CrossRef]
|
|
[30]
|
Chen, J., Yang, Y., Su, J., Jiang, P., Xia, G. and Chen, Q. (2017) Enhanced Activity for Hydrogen Evolution Reaction over CoFe Catalysts by Alloying with Small Amount of Pt. ACS Applied Materials & Interfaces, 9, 3596-3601. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Wu, D., Kusada, K., Yamamoto, T., Toriyama, T., Matsumura, S., Gueye, I. and Kitagawa, H. (2020) On the Electronic Structure and Hydrogen Evolution Reaction Activity of Platinum Group Metal-Based High-Entropy-Alloy Nanoparticles. Chemical Science, 11, 12731-12736. [Google Scholar] [CrossRef]
|
|
[32]
|
Feng, G., Ning, F., Song, J., Shang, H., Zhang, K., Ding, Z. and Xia, D. (2021) Sub-2 nm Ultrasmall High-Entropy Alloy Nanoparticles for Extremely Superior Electrocatalytic Hydrogen Evolu-tion. Journal of the American Chemical Society, 143, 17117-17127. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Jia, Z., Nomoto, K., Wang, Q., Kong, C., Sun, L., Zhang, L.C. and Kruzic, J.J. (2021) A Self-Supported High-Entropy Me-tallic Glass with a Nanosponge Architecture for Efficient Hydrogen Evolution under Alkaline and Acidic Conditions. Advanced Functional Materials, 31, Article ID: 2101586. [Google Scholar] [CrossRef]
|
|
[34]
|
Wang, S., Xu, B., Huo, W., Feng, H., Zhou, X., Fang, F. and Jiang, J. (2022) Efficient FeCoNiCuPd Thin-Film Electrocatalyst for Alkaline Oxygen and Hydrogen Evolution Reactions. Applied Catalysis B: Environmental, 313, Article ID: 121472. [Google Scholar] [CrossRef]
|
|
[35]
|
Hao, J., Zhuang, Z., Cao, K., Gao, G., Wang, C., Lai, F. and Zhu, H. (2022) Unraveling the Electronegativity-Dominated Intermediate Adsorption on High-Entropy Alloy Electrocatalysts. Nature Communications, 13, Article No. 2662. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Wang, R., Huang, J., Zhang, X., Han, J., Zhang, Z., Gao, T. and Song, B. (2022) Two-Dimensional High-Entropy Metal Phosphorus Trichalcogenides for Enhanced Hydrogen Evolution Reaction. ACS Nano, 16, 3593-3603. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Feng, D., Dong, Y., Nie, P., Zhang, L. and Qiao, Z.A. (2022) CoNiCuMgZn High Entropy Alloy Nanoparticles Embedded onto Graphene Sheets via Anchoring and Alloying Strategy as Efficient Electrocatalysts for Hydrogen Evolution Reaction. Chemical Engineering Journal, 430, Article ID: 132883. [Google Scholar] [CrossRef]
|
|
[38]
|
Chen, Z., Duan, X., Wei, W., Wang, S. and Ni, B.J. (2020) Electro-catalysts for Acidic Oxygen Evolution Reaction: Achievements and Perspectives. Nano Energy, 78, Article ID: 105392. [Google Scholar] [CrossRef]
|
|
[39]
|
Li, L., Wang, P., Shao, Q. and Huang, X. (2021) Recent Pro-gress in Advanced Electrocatalyst Design for Acidic Oxygen Evolution Reaction. Advanced Materials, 33, Article ID: 2004243. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Suen, N.T., Hung, S.F., Quan, Q., Zhang, N., Xu, Y.J. and Chen, H.M. (2017) Electrocatalysis for the Oxygen Evolution Reaction: Recent Development and Future Perspec-tives. Chemical Society Reviews, 46, 337-365. [Google Scholar] [CrossRef]
|
|
[41]
|
Suntivich, J., May, K.J., Gasteiger, H.A., Goodenough, J.B. and Shao-Horn, Y. (2011) A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles. Science, 334, 1383-1385. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Lei, Z., Wang, T., Zhao, B., Cai, W., Liu, Y., Jiao, S. and Liu, M. (2020) Recent Progress in Electrocatalysts for Acidic Water Oxidation. Advanced Energy Materials, 10, Article ID: 2000478. [Google Scholar] [CrossRef]
|
|
[43]
|
Shao, Q., Yang, J. and Huang, X. (2018) The Design of Water Oxidation Electrocatalysts from Nanoscale Metal-Organic Frameworks. Chemistry—A European Journal, 24, 15143-15155. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Anantharaj, S. and Aravindan, V. (2020) Develop-ments and Perspectives in 3D Transition-Metal-Based Electrocatalysts for Neutral And Near-Neutral Water Electrolysis. Advanced Energy Materials, 10, Article ID: 1902666. [Google Scholar] [CrossRef]
|
|
[45]
|
Gao, R. and Yan, D. (2020) Recent Development of Ni/Fe-Based Micro/Nanostructures toward Photo/Electrochemical Water Oxidation. Advanced Energy Materials, 10, Article ID: 1900954. [Google Scholar] [CrossRef]
|
|
[46]
|
Jin, Z., Lv, J., Jia, H., Liu, W., Li, H., Chen, Z. and Qiu, H.J. (2019) Nanoporous Al-Ni-Co-Ir-Mo High-Entropy Alloy for Record-High Water Splitting Activity in Acidic Envi-ronments. Small, 15, Article ID: 1904180. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Zhu, H., Zhu, Z., Hao, J., Sun, S., Lu, S., Wang, C. and Du, M. (2022) High-Entropy Alloy Stabilized Active Ir for Highly Efficient Acidic Oxygen Evolution. Chemical Engineering Journal, 431, Article ID: 133251. [Google Scholar] [CrossRef]
|
|
[48]
|
Chen, Z.J., Zhang, T., Gao, X.Y., Huang, Y.J., Qin, X.H., Wang, Y.F. and Yu, H.B. (2021) Engineering Microdomains of Oxides In High-Entropy Alloy Electrodes toward Efficient Oxygen Evolution. Advanced Materials, 33, Article ID: 2101845. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Qiu, H.J., Fang, G., Gao, J., Wen, Y., Lv, J., Li, H. and Sun, S. (2019) Noble Metal-Free Nanoporous High-Entropy Alloys as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Materials Letters, 1, 526-533. [Google Scholar] [CrossRef]
|
|
[50]
|
Sharma, L., Katiyar, N.K., Parui, A., Das, R., Kumar, R., Ti-wary, C.S., Singh, A.K., Halder, A. and Biswas, K. (2022) Low-Cost High Entropy Alloy (HEA) for High-Efficiency Oxygen Evolution Reaction (OER). Nano Research, 15, 4799-4806. [Google Scholar] [CrossRef]
|
|
[51]
|
Qiao, H., Wang, X., Dong, Q., Zheng, H., Chen, G., Hong, M. and Hu, L. (2021) A High-Entropy Phosphate Catalyst for Oxygen Evolution Reaction. Nano Energy, 86, Article ID: 106029. [Google Scholar] [CrossRef]
|
|
[52]
|
Cui, M., Yang, C., Li, B., Dong, Q., Wu, M., Hwang, S. and Hu, L. (2021) High-Entropy Metal Sulfide Nanoparticles Promise High-Performance Oxygen Evolution Reaction. Advanced Energy Materials, 11, Article ID: 2002887. [Google Scholar] [CrossRef]
|