SDC1在乳腺癌及其他肿瘤中作用的研究进展
Research Progress on the Role of SDC1 in Breast Cancer and Other Tumors
DOI: 10.12677/ACM.2022.12121726, PDF, HTML, XML, 下载: 201  浏览: 485 
作者: 吕莲秋*, 邓惠芳, 王 涵, 肖师晗, 聂文祥, 张 波#:华中科技大学同济医学院附属协和医院乳腺甲状腺外科,湖北 武汉
关键词: 乳腺癌SDC1治疗靶点研究进展Breast Cancer SDC1 Therapeutic Target Research Progress
摘要: 多配体蛋白聚糖-1 (SDC1)是硫酸乙酰肝素蛋白多糖(HSPG)的主要成员之一,具有调节代谢、转运和信息传递等功能。SDC1通过其胞外段硫酸乙酰肝素(HS)链,与多种配体结合,参与相应细胞信号的转导,在肿瘤发生发展中发挥着重要作用。乳腺癌是一种具有复杂异质性的恶性肿瘤,其发生发展与多种因素密切相关。尽管乳腺癌的诊断和治疗水平有明显提高,但它仍然是女性肿瘤死亡的第二大原因。因此,探知新的乳腺癌生物标志物和新的治疗靶标具有重要价值。多种研究发现SDC1在乳腺癌的诊断和治疗中具有重要意义,可作为乳腺癌潜在的分子标志物和治疗靶点。现就SDC1分子的结构、功能及其对乳腺癌的调控作用作一综述。
Abstract: Syndecan-1 (SDC1) is one of the main members of heparin sulfate proteoglycan (HSPG), which has functions of regulating metabolism, transporting and information transmission. As co-receptor, SDC1 combines with many ligands by the heparin sulfate on the extracellular domain, participates in cellular signal transduction and plays an important role in the occurrence and development of many malignant tumors. Breast cancer is a malignant tumor with complex heterogeneity, and its occurrence and development are closely related to many factors. Despite significant improvements in diagnosis and treatment of breast cancer, it remains the second leading cause of cancer death in women. Therefore, it is of great value to explore new biomarkers and therapeutic targets for breast cancer. Various studies have shown that SDC1 was of great significance in the diagnosis and treatment of breast cancer and could be used as a potential prognostic marker and therapeutic target for breast cancer. In this review, we focus on the structure, function and regulation of SDC1 in the breast cancer.
文章引用:吕莲秋, 邓惠芳, 王涵, 肖师晗, 聂文祥, 张波. SDC1在乳腺癌及其他肿瘤中作用的研究进展[J]. 临床医学进展, 2022, 12(12): 11980-11985. https://doi.org/10.12677/ACM.2022.12121726

1. 引言

乳腺癌是影响全球女性身心健康的最常见恶性肿瘤,在所有女性癌症中的比例高达16% [1],也是与女性癌症相关死亡的第二大原因 [2]。乳腺癌高度的异质性使其转移率高、易复发、治疗困难且预后不良。虽然近年来乳腺癌患者的总体生存率和预后有所改善,但乳腺癌的治疗仍然是亟待解决的难题。因此,深入探究乳腺癌发生发展的分子机制,寻找新的乳腺癌生物标志物和治疗靶点对于乳腺癌的临床诊治具有重要价值。

硫酸乙酰肝素蛋白聚糖(heparan sulfate proteoglycans, HSPG)是由一个核心蛋白和若干条硫酸乙酰肝素(heparan sulfate, HS)侧链构成的蛋白聚糖,根据核心蛋白的种类可将HSPG分为4类:多配体蛋白聚糖,磷脂酰肌醇蛋白聚糖,串珠蛋白聚糖和集聚蛋白。硫酸乙酰肝素蛋白聚糖家族是细胞表面和细胞外基质(extracellular matrix, ECM)中的重要组分,可与生长因子等多种配体结合并参与配体与受体的结合和相互作用,在细胞表面信号转导和细胞基质互作中发挥作用 [3],从而调节细胞各种信号通路和功能活动 [4]。

多配体蛋白聚糖Syndecans (SDCs)是一个结构保守的I型跨膜蛋白家族,存在于上皮和间质组织的表面。哺乳动物主要有4种多配体蛋白多糖,分别为SDC1,SDC2,SDC3,SDC4。SDC1是最关键的HSPG,也是目前研究最为深入的SDC分子。SDC1通过调控细胞增殖、凋亡和迁移等活动参与了广泛的生物学过程,在多种组织、疾病的生理病理过程及肿瘤的发生发展中发挥重要作用 [5]。研究发现SDC1能够调节肺癌细胞释放外泌体中的miRNA谱,SDC1表达缺失增加了促肿瘤途径的信号传导 [6]。还有临床研究显示在非缺血性扩张型心肌病和心衰患者中,SDC1水平与心脏纤维化和炎症密切相关,是心血管不良事件发生的独立危险因素 [7]。SDC1也参与银屑病的发生,研究表明SDC1敲除小鼠的IL-17细胞反应比野生型小鼠更强,皮肤炎症也显著增加 [8]。本文就SDC1在乳腺癌及其他肿瘤中的作用作一综述,以期为乳腺癌的诊断和治疗提供新思路。

2. SDC1的结构

SDC1基因定位于人类2号染色体,由5个外显子组成。SDC1蛋白由310个氨基酸组成,核心蛋白由三个结构域组成,即胞外结构域(ectodomain, ED)、跨膜结构域(transmembrane domain, TMD)和细胞质结构域(cytoplasmic domain, CD) [9]。Syndecans的短的高度保守的CD可以进一步划分为位于V区两侧的保守的C1 (膜–近端)和C2 (膜–远端)区。V区序列在四种Syndecan家族成员蛋白中都是不同的,可能具有独特的功能特征 [10]。C1区与肌动蛋白结合蛋白相互作用并参与内吞作用,而C2区与各种PDZ蛋白相互作用,如Syntenin,从而在外切体形成和细胞质运输中发挥功能 [11] [12]。V区对于薄层脂膜伸展、肌动蛋白捆绑和细胞迁移至关重要 [13]。肌动蛋白细胞骨架的维持和膜转运主要由CD调控 [14]。SDC1的ED经过翻译后加工过程通过共价键与相应的糖胺聚糖、硫酸乙酰肝素(HS)和硫酸软骨素(chondroitin sulfate, CS)结合 [15]。这些多糖的一个决定性特征是存在硫酸盐和糖醛酸残基,这使它们具有显著的阴离子性质,因此许多含有碱性氨基酸簇的蛋白质能够与HS链相互作用 [16]。ED的蛋白水解性脱落将膜结合的SDC1转化为脱落形式,从而显著影响信号功能。脱落SDC1保留了其HS链以及结合的配体,使其能够以旁分泌或自分泌方式发挥作用,并具有作为竞争抑制物的功能 [17]。

3. SDC1在肿瘤中的作用

SDC1通过其硫酸肝素侧链与一系列细胞外配体结合发挥其共受体的功能,并通过其膜结合和脱落等形式来调节细胞活动,参与肿瘤细胞的增殖、凋亡、血管生成、迁移侵袭和耐药等过程。

SDC1介导的信号在肿瘤细胞生长和增殖中的作用已被多种研究证实。在多发性骨髓瘤中,HGF与SDC1的结合加强了MET信号,导致PI3蛋白激酶B和Ras-MAP激酶通路的激活,从而促进了细胞的生长 [18]。SDC1还作为一种促增殖配体(a proliferation-inducing ligand, APRIL)和跨膜激活剂、钙调节剂和亲环素配体相互作用因子(transmembrane activator and calcium modulator and cyclophilin ligand interactor, TACI)的共同受体,激活APRIL/TACI途径,诱导细胞增殖和存活 [19]。SDC1也被报道与肿瘤细胞的凋亡有关。在骨髓瘤中,研究表明细胞表面SDC1在凋亡时丢失。RNAi抑制SDC1导致细胞生长停滞和骨髓瘤细胞凋亡 [20]。研究还发现在缺乏SDC1的情况下,TRAIL可诱导骨髓瘤的细胞凋亡 [21]。肿瘤需要产生新的血管网络,为癌细胞带来营养和氧气,SDC1通过多种机制参与肿瘤的血管生成。在骨髓瘤中,肝素酶促进HGF和VEGF的表达上调,而SDC1胞外域与VEGF结合,将VEGF呈递给启动血管生成的内皮细胞,促进血管生成 [22]。在被诊断为胶质母细胞瘤的患者中,过度表达的分泌型糖蛋白YKL-40导致SDC1和整合素ανβ5的表达上调,然后通过局部细胞黏附激酶(FAK)酪氨酸397 (Tyr397)、细胞外信号相关激酶(ERK)-1和ERK-2的磷酸化信号级联反应,增加了VEGF信号,促进了血管生成 [23]。肿瘤的转移和耐药是是肿瘤难治的主要原因,而SDC1与肿瘤细胞的迁移和耐药显著相关。层粘连蛋白-1衍生的合成肽AG73 (LQVQLSIR)通过上调整合素β1和SDC1的表达,从而激活MAPK、ERK和PI3激酶/AKT信号通路,进而促进卵巢癌的转移 [24]。化疗耐药被发现与更高水平的脱落SDC1有关,用阿霉素、地塞米松、顺铂和卡菲佐米治疗后,发现缺乏CD的脱落SDC1水平显著增加 [25]。此外,化疗被发现可能通过SDC1的脱落促进HGF/c-Met/IL-11的激活,加剧骨髓瘤的骨破坏 [26]。脱落和全长SDC1的HS链竞争结合下游的上皮生长因子受体(EGFR),从而促进结直肠癌细胞对化疗的耐药性 [27]。还有研究表明SDC1的膜表达同样通过PI3K/AKT通路的改变增加肝癌细胞化疗耐药性 [28]。

4. SDC1在乳腺癌发生发展中的作用

4.1. SDC1与乳腺癌的相关性

如上所述,SDC1在肿瘤中具有复杂的功能,其同样参与了乳腺癌的发展过程。当SDC1缺陷(SDC1/)小鼠与在乳腺中表达原癌基因wnt-1的转基因小鼠杂交时,后代的乳腺组织中的增殖减少,这表明SDC1在wnt-1诱导的肿瘤发生中发挥了作用 [29]。在人乳腺癌细胞异种移植模型和SDC1转基因成纤维细胞移植到小鼠体内的模型中,SDC1的间质表达与显著更高的微血管密度和更大的血管面积相关 [30]。在MCF-7乳腺癌中,人重组SDC1胞外域诱导细胞凋亡。通过n-3多不饱和脂肪酸(n-3PUFA)激活的过氧化物酶体增殖物激活受体γ (PPARγ)信号也可上调SDC1的表达,从而促进乳腺癌细胞的凋亡 [31]。K-ras基因突变的MDA-MB231乳腺癌细胞显示SDC1 (和SDC4)、α2β1和膜型金属蛋白酶1 (MT1-MMP)的表达增加,这一特征似乎增强了侵袭和转移的表型 [32]。在乳腺癌组织化疗前活检获得的细胞中研究发现,对环磷酰胺和表阿霉素治疗的反应性降低与更高水平的SDC1有关 [33]。脱落SDC1可以促进EMT,在乳腺癌和胰腺癌模型中高水平的脱落SDC1被发现上调EMT-TFs如ZEB1、Snail1和Snail2的表达,从而诱导干细胞因子SOX2、BMI1和OCT4的表达,进而促进化疗耐药 [34]。

4.2. SDC1是乳腺癌有价值的治疗靶点

由于SDC1在肿瘤中复杂的功能使其成为一个有吸引力的治疗靶点,这在许多相关研究中已有报道。许多细胞通路是抑制SDC1致癌作用的潜在靶点。完全人源化的SDC1重组抗体OC-46F2可以降低肿瘤微环境中SDC1/VEGFR2的活性,从而在恶性黑色素瘤和卵巢癌实验模型中阻止血管成熟和肿瘤生长 [35]。Batimastat (BB-94)是一种广谱的基质金属蛋白酶抑制剂,可以抑制SDC1的脱落,减少腹水,抑制乳腺癌、卵巢和结直肠癌的发生 [36]。NCS405020是另一种小分子抑制剂,可以防止MT1-MMP同型二聚化,在体内阻断这种复合体的活性,减少SDC1的脱落 [37]。同时,有研究发现SDC1具有作为乳腺癌尤其是三阴性乳腺癌抗肿瘤治疗靶点的潜力 [38]。此外,SDC1膜结合和脱落形式在肿瘤不同阶段发挥独特的作用,在乳腺癌进展过程中,SDC1的表达从肿瘤细胞转移到间质细胞或释放分子的胞外结构域,因此为了有效对抗乳腺癌的进展,联合应用SDC1活性抑制剂、基质金属蛋白酶抑制剂和乙酰肝素酶抑制剂可能效果更好。这些研究显示,SDC1可以作为乳腺癌治疗的靶点,改善患者预后,提高乳腺癌的整体生存率。

5. 总结与展望

乳腺癌是一种具有复杂异质性的恶性肿瘤,其发生发展与多种因素密切相关。SDC1是与肿瘤发生发展关系最紧密的HSPG分子之一,SDC1通过多种分子机制,调节细胞增殖、凋亡和迁移等活动,在肿瘤的发生发展中发挥重要作用,参与乳腺癌的增殖、转移和耐药等过程。因此,SDC1有望成为乳腺癌新的分子标志物和治疗靶点,为乳腺癌的个体化、精准化治疗贡献价值。尽管目前对于SDC1的研究已经取得了很多进展,但其复杂的作用机制还远未明确,例如SDC1的糖链合成和修饰在肿瘤进展中是否发生改变,这种改变是否能够参与调节细胞功能仍不清楚;SDC1是否还存在其他重要的转录后或翻译后修饰,这些修饰对其功能产生什么影响仍需进一步探究等。未来对这些问题的探索将丰富我们对SDC1的作用的认识,为肿瘤的诊断和治疗提供更多理论依据。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Tuasha, N. and Petros, B. (2020) Heterogeneity of Tumors in Breast Cancer: Implications and Prospects for Prognosis and Therapeutics. Scientifica, 2020, Article ID: 4736091.
https://doi.org/10.1155/2020/4736091
[2] Siegel, R.L., Miller, K.D., Fuchs, H.E. and Jemal, A. (2022) Cancer Statistics, 2022. CA: A Cancer Journal for Clinicians, 72, 7-33.
https://doi.org/10.3322/caac.21708
[3] Sarrazin, S., Lamanna, W.C. and Esko, J.D. (2011) Heparan Sulfate Pro-teoglycans. Cold Spring Harbor Perspectives in Biology, 3, Article ID: a004952.
https://doi.org/10.1101/cshperspect.a004952
[4] Rangarajan, S., Richter, J.R., Richter, R.P., Bandari, S.K., Tripathi, K., Vlodavsky, I. and Sanderson, R.D. (2020) Heparanase-Enhanced Shedding of Syndecan-1 and Its Role in Driving Disease Pathogenesis and Progression. Journal of Histochemistry & Cytochemistry, 68, 823-840.
https://doi.org/10.1369/0022155420937087
[5] Gharbaran, R. (2015) Advances in the Molecular Functions of Syndecan-1 (SDC1/CD138) in the Pathogenesis of Malignancies. Critical Reviews in Oncology/Hematology, 94, 1-17.
https://doi.org/10.1016/j.critrevonc.2014.12.003
[6] Parimon, T., Brauer, R., Schlesinger, S.Y., Xie, T., Jiang, D., Ge, L., Huang, Y., Birkland, T.P., Parks, W.C., Habiel, D.M., Hogaboam, C.M., Gharib, S.A., Deng, N., Liu, Z. and Chen, P. (2018) Syndecan-1 Controls Lung Tumorigenesis by Regulating miRNAs Packaged in Exosomes. The American Journal of Pathology, 188, 1094-1103.
https://doi.org/10.1016/j.ajpath.2017.12.009
[7] Liu, W., Wang, Y., Zheng, J., Song, D., Zheng, S., Ren, L., Wang, Y., Yao, Y., Wang, Y., Liu, Y., Bai, R., Dong, J. and Liu, T. (2019) Syndecan-1 as an Independent Risk Factor for the Incidence of Adverse Cardiovascular Events in Patients Having Stage C and D Heart Failure with Non-Ischemic Dilated Cardiomyopathy. Clinica Chimica Acta, 490, 63-68.
https://doi.org/10.1016/j.cca.2018.12.022
[8] Jaiswal, A.K., Sadasivam, M., Archer, N.K., Miller, R.J., Dillen, C.A., Ravipati, A., Park, P.W., Chakravarti, S., Miller, L.S. and Hamad, A.R.A. (2018) Syndecan-1 Regulates Psoriasiform Dermatitis by Controlling Homeostasis of IL-17- Producing γδ T Cells. The Journal of Immunology, 201, 1651-1661.
https://doi.org/10.4049/jimmunol.1800104
[9] Bernfield, M., Götte, M., Park, P.W., Reizes, O., Fitzgerald, M.L., Lincecum, J. and Zako, M. (1999) Functions of Cell Surface Heparan Sulfate Proteoglycans. Annual review of biochemistry, 68, 729-777.
https://doi.org/10.1146/annurev.biochem.68.1.729
[10] De Rossi, G. and Whiteford, J.R. (2013) Novel Insight into the Biological Functions of Syndecan Ectodomain Core Proteins. Biofactors, 39, 374-382.
https://doi.org/10.1002/biof.1104
[11] Maday, S., Anderson, E., Chang, H.C., Shorter, J., Satoh, A., Sfakianos, J., Fölsch, H., Anderson, J.M., Walther, Z. and Mellman, I. (2008) A PDZ-Binding Motif Controls Basolateral Targeting of Syndecan-1 along the Biosynthetic Pathway in Polarized Epithelial Cells. Traffic, 9, 1915-1924.
https://doi.org/10.1111/j.1600-0854.2008.00805.x
[12] Jung, O., Trapp-Stamborski, V., Purushothaman, A., Jin, H., Wang, H., Sanderson, R.D. and Rapraeger, A.C. (2016) Heparanase-Induced Shedding of Syndecan-1/CD138 in Myeloma and Endothelial Cells Activates VEGFR2 and an Invasive Phenotype: Prevention by Novel Synstatins. Oncogenesis, 5, e202.
https://doi.org/10.1038/oncsis.2016.5
[13] Chakravarti, R., Sapountzi, V. and Adams, J.C. (2005) Functional Role of Syndecan-1 Cytoplasmic V Region in Lamellipodial Spreading, Actin Bundling, and Cell Migration. Molecular Biology of the Cell, 16, 3678-3691.
https://doi.org/10.1091/mbc.e04-10-0907
[14] Alexopoulou, A.N., Multhaupt, H.A. and Couchman, J.R. (2007) Syndecans in Wound Healing, Inflammation and Vascular Biology. The International Journal of Biochemistry & Cell Biology, 39, 505-528.
https://doi.org/10.1016/j.biocel.2006.10.014
[15] Zhang, L., David, G. and Esko, J.D. (1995) Repetitive Ser-Gly Sequences Enhance Heparan Sulfate Assembly in Proteoglycans. Journal of Biological Chemistry, 270, 27127-27135.
https://doi.org/10.1074/jbc.270.45.27127
[16] Mulloy, B., Lever, R. and Page, C.P. (2017) Mast Cell Glycosaminoglycans. Glycoconjugate Journal, 34, 351-361.
https://doi.org/10.1007/s10719-016-9749-0
[17] Bertrand, J. and Bollmann, M. (2019) Soluble Syndecans: Bi-omarkers for Diseases and Therapeutic Options. British Journal of Pharmacology, 176, 67-81.
https://doi.org/10.1111/bph.14397
[18] Derksen, P.W., Keehnen, R.M., Evers, L.M., Van Oers, M.H., Spaargaren, M. and Pals, S.T. (2002) Cell Surface Proteoglycan Syndecan-1 Mediates Hepatocyte Growth Factor Binding and Promotes Met Signaling in Multiple Myeloma. Blood, 99, 1405-1410.
https://doi.org/10.1182/blood.V99.4.1405
[19] Moreaux, J., Sprynski, A.C., Dillon, S.R., Mahtouk, K., Jourdan, M., Ythier, A., Moine, P., Robert, N., Jourdan, E., Rossi, J.F. and Klein, B. (2009) APRIL and TACI Interact with Syndecan-1 on the Surface of Multiple Myeloma Cells to form an Essential Survival Loop. European Journal of Hae-matology, 83, 119-129.
https://doi.org/10.1111/j.1600-0609.2009.01262.x
[20] Khotskaya, Y.B., Dai, Y., Ritchie, J.P., MacLeod, V., Yang, Y., Zinn, K. and Sanderson, R.D. (2009) Syndecan-1 Is Required for Robust Growth, Vascularization, and Me-tastasis of Myeloma Tumors in Vivo. Journal of Biological Chemistry, 284, 26085-26095.
https://doi.org/10.1074/jbc.M109.018473
[21] Wu, Y.H., Yang, C.Y., Chien, W.L., Lin, K.I. and Lai, M.Z. (2012) Removal of Syndecan-1 Promotes TRAIL-Induced Apoptosis in Myeloma Cells. The Journal of Immunology, 188, 2914-2921.
https://doi.org/10.4049/jimmunol.1102065
[22] Purushothaman, A., Uyama, T., Kobayashi, F., Yamada, S., Sugahara, K., Rapraeger, A.C. and Sanderson, R.D. (2010) Heparanase-Enhanced Shedding of Syndecan-1 by Myeloma Cells Promotes Endothelial Invasion and Angiogenesis. Blood, 115, 2449-2457.
https://doi.org/10.1182/blood-2009-07-234757
[23] Francescone, R.A., Scully, S., Faibish, M., Taylor, S.L., Oh, D., Moral, L., Yan, W., Bentley, B. and Shao, R. (2011) Role of YKL-40 in the Angiogenesis, Radioresistance, and Progression of Glioblastoma. Journal of Biological Chemistry, 286, 15332-15343.
https://doi.org/10.1074/jbc.M110.212514
[24] Yoshida, Y., Kurokawa, T., Nishikawa, Y., Orisa, M., Kleinman, H.K. and Kotsuji, F. (2008) Laminin-1-Derived Scrambled Peptide AG73T Disaggregates Laminin-1-Induced Ovarian Cancer Cell Spheroids and Improves the Efficacy of Cisplatin. International Journal of Oncology, 32, 673-681.
https://doi.org/10.3892/ijo.32.3.673
[25] Ramani, V.C. and Sanderson, R.D. (2014) Chemotherapy Stimulates Syndecan-1 Shedding: A Potentially Negative Effect of Treatment That May Promote Tumor Relapse. Matrix Biology, 35, 215-222.
https://doi.org/10.1016/j.matbio.2013.10.005
[26] Ramani, V.C., Yang, Y., Ren, Y., Nan, L. and Sanderson, R.D. (2011) Heparanase Plays a Dual Role in Driving Hepatocyte Growth Factor (HGF) Signaling by Enhancing HGF Ex-pression and Activity. Journal of Biological Chemistry, 286, 6490-6499.
https://doi.org/10.1074/jbc.M110.183277
[27] Wang, X., Zuo, D., Chen, Y., Li, W., Liu, R., He, Y., Ren, L., Zhou, L., Deng, T., Wang, X., Ying, G. and Ba, Y. (2014) Shed Syndecan-1 Is Involved in Chemotherapy Resistance via the EGFR Pathway in Colorectal Cancer. British Journal of Cancer, 111, 1965-1976.
https://doi.org/10.1038/bjc.2014.493
[28] Yu, L., Xu, H., Zhang, S., Chen, J. and Yu, Z. (2020) SDC1 Promotes Cisplatin Resistance in Hepatic Carcinoma Cells via PI3K-AKT Pathway. Human Cell, 33, 721-729.
https://doi.org/10.1007/s13577-020-00362-6
[29] Alexander, C.M., Reichsman, F., Hinkes, M.T., Lincecum, J., Becker, K.A., Cumberledge, S. and Bernfield, M. (2000) Syndecan-1 Is Required for Wnt-1-Induced Mammary Tumorigenesis in Mice. Nature Genetics, 25, 329-332.
https://doi.org/10.1038/77108
[30] Maeda, T., Desouky, J. and Friedl, A. (2006) Syndecan-1 Expression by Stromal Fibroblasts Promotes Breast Carcinoma Growth in Vivo and Stimulates Tumor Angiogenesis. Oncogene, 25, 1408-1412.
https://doi.org/10.1038/sj.onc.1209168
[31] Sun, H., Berquin, I.M., Owens, R.T., O’Flaherty, J.T. and Edwards, I.J. (2008) Peroxisome Proliferator-Activated Receptor Gamma-Mediated Up-Regulation of Syndecan-1 by n-3 Fatty Acids Promotes Apoptosis of Human Breast Cancer Cells. Cancer Research, 68, 2912-2919.
https://doi.org/10.1158/0008-5472.CAN-07-2305
[32] Vuoriluoto, K., Högnäs, G., Meller, P., Lehti, K. and Ivaska, J. (2011) Syndecan-1 and -4 Differentially Regulate Oncogenic K-ras Dependent Cell Invasion into Collagen through α2β1 Integrin and MT1-MMP. Matrix Biology, 30, 207-217.
https://doi.org/10.1016/j.matbio.2011.03.003
[33] Götte, M., Kersting, C., Ruggiero, M., Tio, J., Tulusan, A.H., Kiesel, L. and Wülfing, P. (2006) Predictive Value of Syndecan-1 Expression for the Response to Neoadjuvant Chem-otherapy of Primary Breast Cancer. Anticancer Research, 26, 621-627.
[34] Pradella, D., Naro, C., Sette, C. and Ghigna, C. (2017) EMT and Stemness: Flexible Processes Tuned by Alternative Splicing in Development and Cancer Progression. Molecular Cancer, 16, Article No. 8.
https://doi.org/10.1186/s12943-016-0579-2
[35] Orecchia, P., Conte, R., Balza, E., Petretto, A., Mauri, P., Mingari, M.C. and Carnemolla, B. (2013) A Novel Human Anti-Syndecan-1 Antibody Inhibits Vascular Maturation and Tumour Growth in Melanoma. European Journal of Cancer, 49, 2022-2033.
https://doi.org/10.1016/j.ejca.2012.12.019
[36] Macaulay, V.M., O’Byrne, K.J., Saunders, M.P., Braybrooke, J.P., Long, L., Gleeson, F., Mason, C.S., Harris, A.L., Brown, P. and Talbot, D.C. (1999) Phase I Study of Intrapleural Batimastat (BB-94), a Matrix Metalloproteinase Inhibitor, in the Treatment of Malignant Pleural Effusions. Clinical Cancer Research, 5, 513-520.
[37] Remacle, A.G., Golubkov, V.S., Shiryaev, S.A., Dahl, R., Stebbins, J.L., Chernov, A.V., Cheltsov, A.V., Pellecchia, M. and Strongin, A.Y. (2012) Novel MT1-MMP Small-Molecule Inhibitors Based on Insights into Hemopexin Domain Function in Tumor Growth. Cancer Research, 72, 2339-2349.
https://doi.org/10.1158/0008-5472.CAN-11-4149
[38] Nguyen, T.L., Grizzle, W.E., Zhang, K., Hameed, O., Siegal, G.P. and Wei, S. (2013) Syndecan-1 Overexpression Is Associated with Nonluminal Subtypes and Poor Prognosis in Advanced Breast Cancer. American Journal of Clinical Pathology, 140, 468-474.
https://doi.org/10.1309/AJCPZ1D8CALHDXCJ