甲氨蝶呤相关基因多态性在儿童急性淋巴细胞白血病大剂量甲氨蝶呤治疗的影响
Impact of Methotrexate-Related Genetic Polymorphisms in High-Dose Methotrexate Therapy for Childhood Acute Lymphoblastic Leukaemia
DOI: 10.12677/ACM.2023.134809, PDF, 下载: 156  浏览: 247 
作者: 刘珊杉, 于 洁:重庆医科大学附属儿童医院血液肿瘤中心,重庆
关键词: 儿童急性淋巴细胞白血病甲氨蝶呤基因多态性Childhood Acute Lymphoblastic Leukaemia Methotrexate Genetic Polymorphism
摘要: 急性淋巴细胞白血病(Acute Lymphoblastic Luekemia, ALL)是儿童发病率最高的恶性肿瘤,经过化疗等治疗后ALL儿童的预后大大改善,但复发仍是现在一大难题。大剂量甲氨蝶呤(high-dose metho-trexate, HDMTX)有效地降低了ALL中枢神经系统的复发。但实际临床中HDMTX治疗后不同个体的疗效和药物不良反应(adverse drugreaction, ADR)表现有差异,基因组所具有的基因多态性与MTX化疗的ADR之间有重要关联。本综述旨在总结国内外所研究的一些相关基因位点多态性与MTX化疗的ADR的关联性。例如:亚甲基四氢叶酸还原酶(methotrexate reductase, MTHFR)基因、多耐药蛋白(ATP-binding cassette subfamily B member 1, ABCB1)基因、丝氨酸羟甲基四氢叶酸还原酶1 serine hydroxymethyl transferase 1, SHMT1)基因、有机阴离子转运体(solute carrier organic anion trans-porter 1B1, SLCO1B1)基因。
Abstract: Acute lymphoblastic leukaemia is the most prevalent malignancy in children. The prognosis for children with ALL has improved considerably after treatment with chemotherapy and other thera-pies, but relapse is still a major challenge today. High-dose methotrexate has been effective in re-ducing relapse in the central nervous system of ALL. However, in actual clinical practice, there are differences in the efficacy and manifestation of adverse drug reactions in different individuals after HDMTX treatment, and there is an important association between genetic polymorphisms and ADR of MTX chemotherapy. The aim of this review is to summarize the association between polymor-phisms at some relevant genetic loci and the ADR of MTX chemotherapy. For example: methylene-tetrahydrofolate reductase gene, multidrugresistance protein gene, serine hydroxymethyltetrahy-drofolate reductase gene and organic anion transporter gene.
文章引用:刘珊杉, 于洁. 甲氨蝶呤相关基因多态性在儿童急性淋巴细胞白血病大剂量甲氨蝶呤治疗的影响[J]. 临床医学进展, 2023, 13(4): 5732-5739. https://doi.org/10.12677/ACM.2023.134809

1. 引言

急性淋巴细胞白血病(Acute Lymphoblastic Luekemia, ALL)儿童发病率最高的恶性肿瘤,占儿童白血病的80%左右。通过以化疗为主要治疗手段的方案,目前儿童ALL的总生存率和无复发生存率已分别达到90%和80%以上,但仍有10%~15%的复发率 [1] 。曾经中枢神经系统白血病(central nervous system leukemia, CNSL)独立或联合复发的几率可达5%以上 [2] ,经过现代ALL化疗技术的不断完善,针对预防CNS复发问题加强了鞘注化疗,并实施大剂量甲氨蝶呤(high-dose methotrexate, HDMTX)的治疗,使得ALL-CNS复发率降低至2.7% [3] 。HDMTX的应用在预防CNS复发中发挥了重要作用,极大减少了放疗的治疗几率。

中枢神经系统和睾丸都存在生理屏障,因此常规剂量的MTX难以渗入达到有效浓度,只有HDMTX能够克服和透过屏障,达到局部的有效治疗药物浓度;而且其抗肿瘤作用强度及不良反应与该药物的浓度及持续时间相关。最常见的HDMTX相关副作用为骨髓抑制或血液相关毒性(血红蛋白减少、粒细胞缺乏、血小板减少等)和非血液系统相关副作用(皮肤黏膜损伤、消化道反应、肝功能损害、肾损伤、神经毒性)。其中神经毒性一旦发生,即使使用CF解救也不能逆转,主要表现为头痛、头晕、呕吐、乏力,甚至出现脑白质病变、脱髓鞘病变、脑脊液生化异常等 [4] 。实际临床中HDMTX治疗后不同个体的疗效和药物不良反应(adverse drugreaction, ADR)表现有差异,导致这种差异的原因和机制值得关注和研究,从而才能制定出增加疗效避免毒副作用的治疗方案,实现个体化治疗。

甲氨蝶呤通过还原叶酸载体(reduced floate carrier, RFC1)介导的主动转运进入细胞,然后通过两条途径:① 通过拮抗二氢叶酸还原酶及其他相关酶(亚甲基四氢叶酸还原酶methotrexate reductase, MTHFR、丝氨酸羟甲基四氢叶酸还原酶1 serine hydroxymethyl transferase 1, SHMT1),抑制二氢叶酸的产生,进而影响叶酸的循环,抑制嘌呤的合成,抑制肿瘤细胞复制等。② 甲氨蝶呤代谢产物多聚谷氨酸盐(MTX-poly-gluamates, MTXPG)的作用:该物质在细胞内排泄时间更长、与二氢叶酸还原酶结合力更强,解离时间更长、直接抑制胸腺合成酶。故MTXPG的细胞毒作用更强于MTX。将导致嘌呤胸腺合成受损、DNA复制抑制,从而抑制细胞的复制。细胞中的转运体也可降低甲氨蝶呤的有效细胞浓度,例如:多耐药蛋白(ATP-binding cassette subfamily B member 1, ABCB1)、乳腺癌耐药蛋白(ATP-binding cassette subfamily G member 2, ABCG2)、有机阴离子转运体(solute carrier organic anion transporter 1B1, SLCO1B1) [5] 。

近年来,学者证实化疗药物代谢的基因可作为ALL疗效及ADR药物不良反应的预测指标,人类基因组所具有的基因多态性(single nucleotide polymorphism, SNP)为主要因素。故本文,欲结合药物基因组学分析各相关基因多态性与MTX化疗的不良反应等影响的关联性。

2. MTHFR基因

MTHFR催化5,10-亚甲基四氢叶酸转换成5-甲基四氢叶酸盐,使之能为同型半胱氨酸供甲基形成甲硫氨酸。该酶是人体叶酸代谢中的一个重要的酶。编码MTHFR的基因位于1p36.3 [4] 。

1) A1298C位点(rs1801131)该基因位点野生型为AA,基因突变后有AC、CC基因型。突变后的基因会影响酶活性的表达,从而对MTX的毒副作用产生一定影响 [6] 。多个研究中表明携带MTHFR A1298C(rs1801131)位点的突变型(CC、AC型)ALL患者较野生型患者,HDMTX化疗后发生消化道不良反应(恶心、呕吐、黏膜损伤)、血液毒性(血小板降低等)、肝毒性的风险更低 [7] [8] [9] [10] 。陈洋等人的Meta分析也论证了这一点 [11] 。其原因可能与突变型基因导致MTHFR活性降低、叶酸增多,进而促进胸腺嘧啶合成,降低了机体组织细胞对MTX的敏感性,增加了对MTX细胞毒性的耐受 [10] [12] 。但也有相关研究持不同看法,Zhu等人完成的Mata分析中及Suthandiram S的研究表示该位点多样性与HD-MTX毒性、生存无明显相关性 [13] [14] 。

2) C677T位点(rs1801133)该基因位点野生型为CC,突变后有CT、TT。在儿童骨肉瘤及其他实体肿瘤中HDMTX治疗中,研究表明该基因位点的突变会增加发生血液学毒性的风险 [15] 。而在ALL儿童HD-MTX治疗中也有类似结果:携带该位点突变型的患儿较野生型患儿发生肝损害风险可达到4~6倍、3~4级消化道反应风险达4.41倍、骨髓抑制风险达数倍甚至十几倍 [16] [17] [18] [19] 。在多个的Meta分析中也论证了这一点 [11] [20] [21] 。这可能是因为该位点的突变使MTHFR酶活性减弱,对MTX应答较差,延迟MTX排泄所导致的毒副作用增加 [7] [14] 。故该位点的多样性也可作为ALL患儿HDMTX化疗不良反应和药物体内排泄的有效预测指标 [18] 。

而在预后方面:多个研究及系统性综述中提示携带MTHFRC677T (rs1801133)位点突变的患儿预后更差,表现为复发率更高、无事件生存率及总生存率都更低,其中在纯合子突变(TT)的患儿中更为突出 [16] [19] [22] 。

3. ABCB1基因

ATP结合盒(ATP binding cassette, ABC)转运蛋白是一大类跨膜蛋白,参与多种物质的吸收、转运和排泄,有7个亚家族,目前研究最多的是ABCB1 [23] 。ABCB1基因位于7q21.1上,编码出可与三磷酸腺苷(adenosine triphosphate, ATP)结合的p糖蛋白(P-glycoprotein, P-gp),使得ATP水解释放出能量,从而为将MTX泵出细胞供能。在已发现ABCB1基因的50多个SNP中,C3435T位点(rs1045642)的突变被发现与P-gp活性相关;其是同义突变,通过信使核糖核酸(messenger ribonucleic acid,mRNA)折叠中的等位基因特异性差异影响剪切、加工或翻译控制和调节,影响mRNA的表达水平,改变P-gp的构象,从而改变与药物、抑制剂的相互作用位点的结构,最终减少泵出MTX的供能,延迟MTX的排泄,增加不良反应发生的风险 [24] [25] 。

在各国的研究中均有报道携带野生型该基因位点的ALL患者的MTX血药浓度更低 [7] [26] [27] 。在ALL患者中该基因位点的突变会增加骨髓抑制(贫血、白细胞降低、血小板减少等)、肝功能损害的风险,其中发生骨髓抑制与等位基因T的数目有正相关性 [26] [27] [28] [29] 。在Gregers J的研究中排除了其他可能干扰的因素后在丹麦人群中得到C3435T位点突变携带者复发的风险低于野生型 [30] 。这可能是CC基因型的高表达导致了将药物更多地排除细胞,使得细胞内药物浓度较低,不能达到杀死肿瘤细胞的目的,从而导致耐药 [31] 。但携带该位点突变的患儿中严重的骨髓抑制可能会增加死亡、第二次癌症的风险 [30] 。

4. SHMT1基因

SHMT是叶酸代谢的关键酶之一,具有可逆性地催化丝氨酸及四氢叶酸转化为甘氨酸和5,10-亚甲基四氢叶酸,为嘌呤、胸苷酸等合成提供甲基;影响DNA、RNA合成等。SHMT有SHMT1和SHMT2两个亚基。国外的研究者们将SHMT1和SHMT2抑制剂RZ-2994加入T-ALL细胞系中,发现药物诱导S/G2细胞周期阻滞,补充甲酸盐可挽救SHMT1/2抑制作用。证实了上述作用机制,并且得出了抑制SHMT1与SHMT2可抑制体内白血病进展的结论 [32] 。

SHMT1基因位于17q11.2,含12个外显子,编码484个氨基酸残基。rs1979277是目前SHMT1基因中研究最多的SNP,该位点可通过改变SHMT1酶氨基酸序列而对叶酸代谢及叶酸拮抗剂甲氨蝶呤等药物代谢产生影响。该基因位点的杂合突变可降低儿童ALL易感性 [33] [34] [35] 。还发现SHMT1基因中rs1979277、rs3783、rs1979276及rs12952556四个基因位点基因型分布相同(在同一人体内该四个位点同为野生型、杂合型、纯合型),可能呈完全连锁不平衡 [36] 。它们其中一个或几个基因位点的突变可能降低HD-MTX治疗中发生肝脏毒性的风险,但与中性粒细胞减少无明显关系 [37] 。可能与该基因在肝组织中表达更高有关。

5. SLC19A1基因

SLC19A1基因编码RFC,该载体将甲氨蝶呤转入肿瘤细胞中,目前研究最多的基因位点是rs1051266 (G80A);该基因位点的多态性导致第一跨膜结构域中的组氨酸(H27R)被精氨酸取代,导致RFC转运特性的改变、RFC表达的降低,从而减少MTX转运 [38] 。且该基因位点的突变会增加细胞内MTXPG浓度 [39] 。故RFC1 rs1051266的多态性对HD-MTX化疗不良反应产生一定影响。

国内外多个研究及系统评价等均表示携带rs1051266突变的等位基因的患儿发生化疗后发生骨髓抑制、肝功能损害的危险更高,且纯合子突变更明显 [4] [40] [41] [42] [43] [44] 。此外还发现在中国人群中携带RFC1rs1051266 AA型的患者在肾功能损伤、消化道反应、血栓事件、黏膜毒性均高于GG + GA型 [42] [45] 。

在SLC19A1 rs1051266的预后意义的研究中存在相互矛盾的结果。YVA-VÁZQUEZ, M.A.认为携带该位点突变的等位基因(A)的患儿更容易复发、预后更差、生存时间更短,发生事件的风险是未突变基因携带者的6.29倍 [41] 。而不少研究得出G等位基因携带者预后更差 [46] [47] 。

6. SLCO1B1基因

SLCO1B1编码出的有机阴离子转运多肽1B1 (organic aniontransporter, OATP1B1)是体内MTX的重要的转运体之一,介导从血窦中将MTX摄取至肝脏中,再通过胆汁排泄到胃肠道中 [48] 。故SLCO1B1基因中的SNP主要与MTX清除率及胃肠道的影响相关 [49] 。

Trevino LR等学者使用全基因组的方法,确定了位于12号染色体上的有机阴离子转运体基因(SLCO1B1)的SNP与MTX的药代动力学和药效学有很强的相关性。筛选出常见的对MTX的代谢有显著的影响的SNP,包括3个外显子(rs11045819、rs4149056、rs2306283)及非编码SNP (rs4149081、rs11045879、rs11045818、rs10841753、rs11045872、rs17328763、rs11045787),其中rs4149056是研究最多的位点;且两类SNP无连锁反应 [49] 。ALL患者中MTX清除率相对于上述3个外显子SNP (rs11045819、rs4149056、rs2306283)位点上等位基因突变的数目成比例改变,每一个突变的等位基因分别为增加9.8 ml/min2、降低12 ml/min2、增加1.7 ml/min2 MTX的清除率 [50] [51] 。其中在rs4149056位点中野生型等位基因(C)会增加MTX的排泄且携带CC基因型的患儿预后更差 [52] 。这可能跟基因突变后降低了OATP1B1的表达,从而降低药物的转运速率有关 [53] 。

在非编码的SNP中:rs4149081、rs11045879、rs11045872的野生型等位基因清除率更高、血浆浓度更低,胃肠道毒性更高;相反其余位点(rs11045818、rs10841753、rs17328763、rs11045787)的野生型清除率更低而血浆浓度更高,胃肠道毒性更低 [49] [54] [55] 。对于非编码SNP,可能是通过影响转录及转录后的处理(前mRNA的剪切、mRNA的翻译)作用。同时,因非编码SNP的相互连锁反应,SLCO1B1可能同时受到多重非编码SNP的影响。例如现研究已表明rs4149081和rs11045879之间完全连锁不平衡 [49] [56] 。而当rs4149056、rs11045879存在竞争关系时,11045879的作用更占优势 [48] [56] 。其余SNP仍需要更多的研究去论证及探索对MTX的清除率的具体影响及作用途径。

7. 总结

近些年来人们对相关基因的SNP对急淋儿童使用大剂量甲氨蝶呤影响等的认识越来越深入,在未来通过检测相关基因型,预先确定ALL患者对HD-MTX的相关反应,从而制定合适的治疗方案或采取一定的预防措施,有助于后续制定个体化大剂量甲氨蝶呤的治疗,降低患儿严重的不良反应,降低死亡风险。

参考文献

[1] Jeha, S., et al. (2019) Improved CNS Control of Childhood Acute Lymphoblastic Leukemia without Cranial Irradiation: St Jude Total Therapy Study 16. Journal of Clinical Oncology, 37, 3377-3391.
https://doi.org/10.1200/JCO.19.01692
[2] van der Velden, V.H.J., de Launaij, D., de Vries, J.F., de Haas, V., Sonneveld, E., Voerman, J.S.A., et al. (2016) New Cellular Markers at Diagnosis Are Associated with Isolated Central Nervous System Relapse in Paediatric B-Cell Precursor Acute Lymphoblastic Leukaemia. British Journal of Haematolo-gy, 172, 769-781.
https://doi.org/10.1111/bjh.13887
[3] Tang, J., Yu, J., Cai, J., Zhang, L., Hu, S., Gao, J., et al. (2021) Prognostic Factors for CNS Control in Children with Acute Lymphoblastic Leukemia Treated without Cranial Irradiation. Blood, 138, 331-343.
https://doi.org/10.1182/blood.2020010438
[4] 徐康康, 廖清船, 张永, 等. MTHFR C677T和RFC1 G80A基因多态性对急性淋巴细胞白血病患儿大剂量甲氨蝶呤化疗不良反应的影响[J]. 实用儿科临床杂志, 2009, 24(21): 1674-1676, 1696.
[5] Lopez-Lopez, E., Martin-Guerrero, I., Ballesteros, J. and Garcia-Orad, A. (2013) A Systematic Review and Meta- Analysis of MTHFR Polymorphisms in Methotrexate Toxicity Prediction in Pediatric Acute Lympho-blastic Leukemia. The Pharmacogenomics Journal, 13, 498-506.
https://doi.org/10.1038/tpj.2012.44
[6] Koppen, I.J.N., Hermans, F.J.R. and Kaspers, G.J.L. (2010) Folate Related Gene Polymorphisms and Susceptibility to Develop Childhood Acute Lymphoblastic Leukaemia. British Journal of Haematology, 148, 3-14.
https://doi.org/10.1111/j.1365-2141.2009.07898.x
[7] Esmaili, M.A., Kazemi, A., Faranoush, M., Mellstedt, H., Zaker, F., Safa, M., et al. (2020) Polymorphisms within Methotrexate Pathway Genes: Relationship between Plasma Methotrexate Levels, Toxicity Experienced and Outcome in Pediatric Acute Lymphoblastic Leukemia. Iranian Journal of Basic Medical Sciences, 23, 800-809.
[8] 郑明霞, 赵文理. MTHFR基因多态性与急性淋巴细胞白血病患儿甲氨蝶呤化疗后不良反应及临床预后的关系[J]. 山东医药, 2020, 60(4): 26-29.
https://doi.org/10.3969/j.issn.1002-266X.2020.04.007
[9] 裴保方, 陶兴茹, 刘炜, 等. MTHFR基因多态性对大剂量甲氨蝶呤化疗后患儿血药浓度及药物不良反应的影响[J]. 中国合理用药探索, 2021, 18(10): 36-40.
https://doi.org/10.3969/j.issn.2096-3327.2021.10.009
[10] 白小红, 牛佳慧, 倪美艳, 童荣生. MTHFR基因多态性与大剂量甲氨蝶呤治疗儿童急性淋巴细胞白血病的临床疗效及药物不良反应的相关性分析[J]. 中国临床药理学杂志, 2021, 37(22): 3056-3059.
https://doi.org/10.13699/j.cnki.1001-6821.2021.22.010
[11] 陈洋, 夏江宝, 何晓东, 沈佐君. MTHFR基因多态性在MTX治疗急性淋巴细胞白血病过程中毒性反应的Meta分析[J]. 中华疾病控制杂志, 2015, 19(8): 811-815.
https://doi.org/10.16462/j.cnki.zhjbkz.2015.08.014
[12] de Jonge, R., Hooijberg, J.H., van Zelst, B.D., Jansen, G., van Zantwijk, C.H., Kaspers, G.J., et al. (2005) Effect of Polymorphisms in Folate-Related Genes on in Vitro Metho-trexate Sensitivity in Pediatric Acute Lymphoblastic Leukemia. Blood, 106, 717-720.
https://doi.org/10.1182/blood-2004-12-4941
[13] Zhu, C., Liu, Y.W., Wang, S.Z., et al. (2018) Associations be-tween the C677T and A1298C Polymorphisms of MTHFR and the Toxicity of Methotrexate in Childhood Malignancies: A Meta-Analysis. The Pharmacogenomics Journal, 18, 450-459.
https://doi.org/10.1038/tpj.2017.34
[14] Suthandiram, S., Gan, G.-G., Zain, S.M., et al. (2014) Effect of Polymor-phisms within Methotrexate Pathway Genes on Methotrexate Toxicity and Plasma Levels in Adults with Hematological Malignancies. Pharmacogenomics, 15, 1479- 1494.
https://doi.org/10.2217/pgs.14.97
[15] Patiño-García, A., Zalacaín, M., Marrodán, L., San-Julián, M. and Sierrasesúmaga, L. (2009) Methotrexate in Pediatric Osteosarcoma: Re-sponse and Toxicity in Relation to Genetic Polymorphisms and Dihydrofolate Reductase and Reduced Folate Carrier 1 Expression. The Journal of Pediatrics, 154, 688-693.
https://doi.org/10.1016/j.jpeds.2008.11.030
[16] D’Angelo, V., Ramaglia, M., Iannotta, A., et al. (2011) Metho-trexate Toxicity and Efficacy During the Consolidation Phase in Paediatric Acute Lymphoblastic Leukaemia and MTHFR Polymorphisms as Pharmacogenetic Determinants. Cancer Chemotherapy and Pharmacology, 68, 1339-1346.
https://doi.org/10.1007/s00280-011-1665-1
[17] 杨丽华, 刘茹, 曾其毅. 急性淋巴细胞白血病患儿亚甲基四氢叶酸还原酶基因多态性与大剂量甲氨蝶呤不良反应的相关性[J]. 实用儿科临床杂志, 2012, 27(6): 440-442.
https://doi.org/10.3969/j.issn.1003-515X.2012.06.015
[18] 聂朝霞, 刘岚, 崔巍. MTHRF基因C677T多态性与ALL患儿MTX血药浓度和毒副反应的相关性[J]. 医学临床研究, 2012, 29(2): 295-298.
https://doi.org/10.3969/j.issn.1671-7171.2012.02.037
[19] Ongaro, A., De Mattei, M., Della Porta, M.G., et al. (2009) Gene Polymorphisms in Folate Metabolizing Enzymes in Adult Acute Lymphoblastic Leukemia: Effects on Methotrexate-Related Toxicity and Survival. Haematologica, 94, 1391- 1398.
https://doi.org/10.3324/haematol.2009.008326
[20] 陈开杰, 戴成家, 房光萃, 费燕. 亚甲基四氢叶酸还原酶基因多态性与甲氨蝶呤治疗儿童急性淋巴细胞白血病毒副反应关系的荟萃分析[J]. 药学服务与研究, 2018, 18(5): 337-342.
https://doi.org/10.5428/pcar20180506
[21] 史天陆, 张永煌, 李宇, 等. 亚甲基四氢叶酸还原酶基因C677T和A1298C多态性与甲氨蝶呤致血液系统不良反应关系的Meta分析[J]. 药物不良反应杂志, 2016, 18(5): 321-329.
https://doi.org/10.3760/cma.j.issn.1008-5734.2016.05.001
[22] Ojha, R.P. and Gurney, J.G. (2014) Methylenetet-rahydrofolate Reductase C677T and Overall Survival in Pediatric Acute Lymphoblastic Leukemia: A Systematic Review. Leukemia & Lymphoma, 55, 67-73.
https://doi.org/10.3109/10428194.2013.792336
[23] 张春燕, 任晓蕾, 冯婉玉. 大剂量甲氨蝶呤致急性肾损伤及消除延迟的药物相关基因多态性分析[J]. 医药导报, 2018, 37(10): 1275-1277.
https://doi.org/10.3870/j.issn.1004-0781.2018.10.030
[24] Kimchi-Sarfaty, C., Oh, J.M., Kim, I.W., Sauna, Z.E., Calcagno, A.M., Ambudkar, S.V., et al. (2007) A “Silent” Polymorphism in the MDR1 Gene Changes Substrate Speci-ficity. Science, 315, 525-528.
https://doi.org/10.1126/science.1135308
[25] 张春燕, 任晓蕾, 冯婉玉, 等. MTHFR和ABCB1基因多态性对大剂量甲氨蝶呤毒性反应及排泄延迟的影响[J]. 中国新药杂志, 2019, 28(1): 117-120.
[26] Ramirez-Pacheco, A., Moreno-Guerrero, S., Alamillo, I., et al. (2016) Mexican Childhood Acute Lymphoblastic Leukemia: A Pilot Study of the MDR1 and MTHFR Gene Polymorphisms and Their Associations with Clinical Outcomes. Genetic Testing and Mo-lecular Biomarkers, 20, 597-602.
https://doi.org/10.1089/gtmb.2015.0287
[27] 刘爽, 宋再伟, 易湛苗, 赵荣生. 血液肿瘤患者中多药耐药基因多态性对大剂量甲氨蝶呤不良事件影响的分析[J]. 中国临床药理学杂志, 2019, 35(19): 2421-2425.
https://doi.org/10.13699/j.cnki.1001-6821.2019.19.060
[28] Zgheib, N.K., Akra-Ismail, M., Aridi, C., et al. (2014) Genetic Polymorphisms in Candidate Genes Predict Increased Toxicity with Methotrexate Therapy in Lebanese Children with Acute Lymphoblastic Leukemia. Pharmacogenetics and Genomics, 24, 387-396.
https://doi.org/10.1097/FPC.0000000000000069
[29] 马乐, 吕冬梅, 韩佳. 血液肿瘤患儿MTHFR和ABCB1基因多态性与甲氨蝶呤骨髓抑制的相关性[J]. 实用药物与临床, 2022, 25(1): 32-36.
https://doi.org/10.14053/j.cnki.ppcr.202201004
[30] Gregers, J., Gréen, H., Christensen, I.J., Dalhoff, K., Schroeder, H., Carlsen, N., et al. (2015) Polymorphisms in the ABCB1 Gene and Effect on Outcome and Toxicity in Childhood Acute Lymphoblastic Leukemia. The Pharmacogenomics Journal, 15, 372-379.
https://doi.org/10.1038/tpj.2014.81
[31] Rao, D.N., Anuradha, C., Vishnupriya, S., Sailaja, K., Surekha, D., Raghunadharao, D. and Rajappa, S. (2010) Association of an MDR1 Gene (C3435T) Polymorphism with Acute Leuke-mia in India. Asian Pacific Journal of Cancer Prevention, 11, 1063-1066.
[32] Pikman, Y., Ocasio-Martinez, N., Alexe, G., et al. (2022) Targeting Serine Hydroxymethyltransferases 1 and 2 for T-Cell Acute Lymphoblastic Leukemia Thera-py. Leukemia, 36, 348-360.
https://doi.org/10.1038/s41375-021-01361-8
[33] Vijayakrishnan, J. and Houlston, R.S. (2010) Candidate Gene Association Studies and Risk of Childhood Acute Lymphoblastic Leukemia: A Systematic Review and Meta-Analysis. Haematologica, 95, 1405-1414.
https://doi.org/10.3324/haematol.2010.022095
[34] Skibola, C.F., Smith, M.T., Hubbard, A., et al. (2002) Poly-morphisms in the Thymidylate Synthase and Serine Hydroxymethyltransferase Genes and Risk of Adult Acute Lym-phocytic Leukemia. Blood, 99, 3786-3791.
https://doi.org/10.1182/blood.V99.10.3786
[35] Bahari, G., Hashemi, M., Naderi, M., Sadeghi-Bojd, S. and Taheri, M. (2016) Association of SHMT1 Gene Polymorphisms with the Risk of Childhood Acute Lymphoblastic Leu-kemia in a Sample of Iranian Population. Cellular and Molecular Biology, 62, 45-51.
[36] 丁慧, 岳丽杰, 于洁, 等. 丝氨酸羟甲基转移酶1基因C1420T位点和3’-非翻译区3个位点单核苷酸多态性与儿童急性白血病易感性的关系[J]. 临床检验杂志, 2013, 31(10): 778-781.
[37] 丁慧, 岳丽杰, 于洁, 等. SHMT1多态性与ALL儿童HD-MTX不良反应的关系[J]. 中国肿瘤临床, 2014(3): 162-165.
https://doi.org/10.3969/j.issn.1000-8179.20131420
[38] Kotnik, B.F., Dolžan, V., Grabnar, I. and Jazbec, J. (2010) Relationship of the Reduced Folate Carrier Gene Polymorphism G80A to Methotrexate Plasma Concentration, Toxicity, and Disease Outcome in Childhood Acute Lymphoblastic Leukemia. Leukemia & Lymphoma, 51, 724-726.
https://doi.org/10.3109/10428191003611402
[39] Dervieux, T., Kremer, J., Lein, D.O, et al. (2004) Contribution of Common Polymorphisms in Reduced Folate Carrier and γ-Glutamylhydrolase to Methotrexate Polyglutamate Levels in Patients with Rheumatoid Arthritis. Pharmacogenetics, 14, 733-739.
https://doi.org/10.1097/00008571-200411000-00004
[40] Imanishi, H., Okamura, N., Yagi, M., et al. (2007) Ge-netic Polymorphisms Associated with Adverse Events and Elimination of Methotrexate in Childhood Acute Lympho-blastic Leukemia and Malignant Lymphoma. Journal of Human Genetics, 52, 166-171.
https://doi.org/10.1007/s10038-006-0096-z
[41] Leyva-Vázquez, M.A., Organista-Nava, J., Gómez-Gómez, Y., et al. (2012) Polymorphism G80A in the Reduced Folate Carrier Gene and its Relationship to Survival and Risk of Relapse in Acute Lymphoblastic Leukemia. Journal of Investigative Medicine, 60, 1064-1067.
https://doi.org/10.2310/JIM.0b013e31826803c1
[42] 顾平, 刘易陇, 何霞, 童荣生. 还原叶酸载体基因多态性与大剂量甲氨蝶呤药物不良反应关系的Meta分析[J]. 中国临床药理学杂志, 2016, 32(15): 1432-1434.
https://doi.org/10.13699/j.cnki.1001-6821.2016.15.026
[43] 李红, 蒋慧, 刘青. RFC1基因多态性与大剂量甲氨蝶呤治疗反应的相关性[J]. 上海交通大学学报(医学版), 2014, 34(9):1376-1380.
https://doi.org/10.3969/j.issn.1674-8115.2014.09.023
[44] 杨丽华, 余晶, 邓兰, 等. 急性淋巴细胞白血病患儿还原叶酸载体基因多态性与甲氨蝶呤不良反应的关系[J]. 临床儿科杂志, 2011, 29(5): 425-428.
https://doi.org/10.3969/j.issn.1000-3606.2011.05.007
[45] 张春燕, 黄琳, 任晓蕾, 封宇飞. 还原性叶酸载体1 G80A基因多态性与急性淋巴细胞白血病患儿使用大剂量甲氨蝶呤不良反应关系的系统评价[J]. 中国医院用药评价与分析, 2021, 21(2): 204-206.
https://doi.org/10.14009/j.issn.1672-2124.2021.02.019
[46] Laverdière, C., Chiasson, S., Costea, I., Moghrabi, A. and Krajinovic, M. (2002) Polymorphism G80A in the Reduced Folate Carrier Gene and Its Relationship to Methotrexate Plasma Levels and Outcome of Childhood Acute Lymphoblastic Leukemia. Blood, 100, 3832-3834.
https://doi.org/10.1182/blood.V100.10.3832
[47] Gregers, J., Christensen, I.J., Dalhoff, K., et al. (2010) The As-sociation of Reduced Folate Carrier 80G>A Polymorphism to Outcome in Childhood Acute Lymphoblastic Leukemia Interacts with Chromosome 21 Copy Number. Blood, 115, 4671-4677.
https://doi.org/10.1182/blood-2010-01-256958
[48] 高萍, 张华年. SLCO1 B1基因多态性对甲氨蝶呤治疗的影响[J]. 中国临床药理学杂志, 2014(8): 730-732.
[49] Treviño, L.R., Shimasaki, N., Yang, W., Panetta, J.C., Cheng, C., Pei, D., et al. (2009) Germline Genetic Variation in an Organic Anion Transporter Polypeptide Associated with Methotrexate Pharmacokinetics and Clinical Effects. Journal of Clinical Oncology, 27, 5972-5978.
https://doi.org/10.1200/JCO.2008.20.4156
[50] Ramsey, L.B., Bruun, G.H., Yang, W., Trevino, L.R., Vattathil, S., Scheet, P., et al. (2012) Rare versus Common Variants in Pharmacogenetics: SLCO1B1 Variation and Methotrexate Disposition. Genome Research, 22, 1-8.
https://doi.org/10.1101/gr.129668.111
[51] Ramsey, L.B., Panetta, J.C., Smith, C., Yang, W., Fan, Y., Winick, N.J., et al. (2013) Genome-Wide Study of Methotrexate Clearance Replicates SLCO1B1. Blood, 121, 898-904.
https://doi.org/10.1182/blood-2012-08-452839
[52] Liu, S.-G., Gao, C., Zhang, R.-D., et al. (2017) Polymor-phisms in Methotrexate Transporters and Their Relationship to Plasma Methotrexate Levels, Toxicity of High-Dose Methotrexate, and Outcome of Pediatric Acute Lymphoblastic Leukemia. Oncotarget, 8, 37761-37772.
https://doi.org/10.18632/oncotarget.17781
[53] Tirona, R.G., Leake, B.F., Merino, G. and Kim, R.B. (2001) Poly-morphisms in OATP-C: Identification of Multiple Allelic Variants Associated with Altered Transport Activity Among European- and African-Americans. The Journal of Biological Chemistry, 276, 35669-35675.
https://doi.org/10.1074/jbc.M103792200
[54] Chiusolo, P., Giammarco, S., Bellesi, S., et al. (2012) The Role of MTHFR and RFC1 Polymorphisms on Toxicity and Outcome of Adult Patients with Hematological Malignancies Treat-ed with High-Dose Methotrexate Followed by Leucovorin Rescue. Cancer Chemotherapy and Pharmacology, 69, 691-696.
https://doi.org/10.1007/s00280-011-1751-4
[55] 杨帆, 许刚. 骨肉瘤患者SLCO1B1基因多态性与大剂量甲氨蝶呤不良反应的相关性[J]. 中国临床药学杂志, 2019, 28(4): 250-253.
https://doi.org/10.19577/j.1007-4406.2019.04.003
[56] Lopez-Lopez, E., Martin-Guerrero, I., Ballesteros, J., Pi-ñan, M.A., Garcia-Miguel, P., Navajas, A. and Garcia-Orad, A. (2011) Polymorphisms of the SLCO1B1 Gene Predict Methotrexate-Related Toxicity in Childhood Acute Lymphoblastic Leukemia. Pediatric Blood & Cancer, 57, 612-619.
https://doi.org/10.1002/pbc.23074