昼夜节律与肾脏
Circadian Rhythms and the Kidney
DOI: 10.12677/ACM.2023.134810, PDF, 下载: 209  浏览: 301 
作者: 冉景阳:重庆医科大学附属第二医院肾内科,重庆
关键词: 昼夜节律肾脏生物钟昼夜节律紊乱肾脏疾病Circadian Rhythm Kidney Biological Clock Circadian Rhythm Disorder Kidney Disease
摘要: 作为人类健康和新陈代谢等各个方面的重要调节器,昼夜节律系统逐渐受到人们的重视,越来越多的研究开始关注昼夜节律改变对于人类健康的影响。而肾脏作为昼夜节律最明显的器官之一,其多个肾脏生理过程表现出昼夜节律,包括肾小球滤过率(GFR)、肾血浆流量(RPF)、水和电解质的排泄、激素分泌、血压调节等,而近年来多项研究显示,昼夜节律的改变可能会导致肾脏疾病的发生发展。本文就肾脏的昼夜节律特点以及昼夜节律对肾脏疾病的影响进行综述。
Abstract: The circadian system, as a major regulator of almost every aspect of human health and metabolism, has gradually attracted people’s attention. More and more researchers have begun to pay attention to the impact of circadian rhythm changes on human health. The kidney is one of the organs with the most obvious circadian rhythm, and several renal physiological processes exhibit circadian rhythms, including glomerular filtration rate (GFR), renal plasma flow (RPF), water and electrolyte excretion, hormone secretion, and blood pressure regulation. And several studies in recent years have shown that changes in circadian rhythms may contribute to the development of kidney dis-ease. This article provides a review of the circadian characteristics of the kidney and the impact of circadian rhythms on kidney disease.
文章引用:冉景阳. 昼夜节律与肾脏[J]. 临床医学进展, 2023, 13(4): 5740-5745. https://doi.org/10.12677/ACM.2023.134810

1. 引言

大多数生物体都会预测其生存环境的日常变化,包括光照、温度和食物供应等,以实现机体对环境的最佳适应性。这种在动物、植物、真菌和细菌等生物中观察到的显著的生理节律被称为昼夜节律,这一名称起源于拉丁语的“circa diem”,即大约一天的意思 [1] [2] 。在人类,昼夜节律是指机体通过调节多种行为及生理功能,如免疫功能、体温、血压、代谢、激素分泌等,从而使组织器官的活动呈现24 h左右的周期性改变,以此与外界环境保持一致 [3] 。生命体的昼夜节律是长期对光照、温度等环境因素进行性适应逐渐演化而来,以近似24 h为1周期 [4] 。正常的昼夜节律性主要是由一种被称为生物钟系统的自我维持机制所驱动的,生物钟由中央生物钟和外周生物钟组成,中央生物钟主要位于下丘脑前部的视交叉上核(suprachiasmatic nucleus, SCN),外周生物钟存在于肝、肺、肾、心脏、骨骼肌、脂肪组织和许多其他组织中,接受来自SCN的上游信号并做出反应 [5] 。生物钟是由基因控制的,通过控制相关基因在全身的表达,包括转录、翻译和蛋白质翻译后修饰和降解等过程,从而在时间上控制不同细胞和器官的活动和功能 [6] 。中央生物钟对光刺激敏感,光刺激在视网膜上由光信号转换为神经电信号,经视网膜下丘脑束传导至视交叉上核调控核心钟基因的转录,进而通过神经–体液途径或影响各组织器官的外周钟基因表达,从而调控、协调各器官的功能 [4] 。作为人类健康和新陈代谢等各个方面的重要调节器,生物钟系统逐渐受到人们的重视,越来越多的研究开始关注昼夜节律改变对于人类健康的影响。特别是近几十年来随着人们生活方式的改变,包括越来越多人造光源的使用、环境温度的控制和食物供应的稳定、睡眠障碍、倒班工作及工作压力等,均会导致昼夜节律紊乱,并增加许多慢性病的风险 [7] [8] 。而肾脏作为机体昼夜节律表现最明显的器官之一,其正常的昼夜节律性对于肾脏正常生理功能的维持至关重要,故当机体昼夜节律发生改变时,肾脏也会受到影响而出现病理状态 [9] 。本文就肾脏的昼夜节律性以及昼夜节律对肾脏疾病的影响进行综述。

2. 肾脏的正常昼夜节律性

2.1. 肾小球滤过率(GFR)及肾血浆流量(RPF)的昼夜节律

多个肾脏生理过程表现出昼夜节律,包括肾小球滤过率(GFR)、肾血浆流量(RPF)、水和电解质的排泄、激素分泌、血压调节等 [10] 。而反应肾脏昼夜节律一个明显的例子是,白天肾脏产生的尿液量明显多余夜间产生的尿液量。多项研究表明,GFR及RPF存在昼夜节律性 [11] [12] 。例如Koopman等人进行的一项生理学研究 [10] ,他们在标准化条件下研究了11名正常志愿者,并通过菊粉清除法测量了GFR,通过对氨基马尿酸清除法测量了有效肾血浆流量(RPF)。结果显示,24小时内GFR的变化幅度为36 ml/min,其峰值出现在下午4点到5点之间,最低点在凌晨2点到3点之间。当测量RPF时,这些作者发现了类似的变化,其变化幅度为214 ml/min,其峰值略有移动到晚上7~8点,最低点在早上6点到7点之间。由于GFR和RPF之间的变化,滤过分数(FF = GFR/RPF)也呈现昼夜节律,峰值出现在上午11点,最低点是凌晨1点到2点之间。

2.2. 水电解质及蛋白质排泄的昼夜节律性

对人类的多项研究表明,肾小管对于尿液的浓缩稀释功能存在昼夜节律性,尿液的渗透压在白天较低,但在夜晚较高 [13] [14] 。同时,水和电解质的排泄也存在昼夜节律,其特征是白天的尿量和尿钠、钾和氯的排泄量大于夜间数倍 [15] ,这与肾脏氧合和皮质髓质渗透压梯度以及参与其调节的基因(如加压素受体V1aR、V2R、尿素转运体UT-A2和水通道Aqp2)的昼夜变化相平行 [9] 。Hara等人的一项研究发现,大鼠肾脏的渗透压在髓质内部中似乎具有昼夜节律,在动物活动期达到峰值,在非活动期达到最低点。这一发现也反映了髓质内中Na+、Cl和尿素浓度的昼夜节律 [16] 。有趣的是,尿液的pH值在夜间变得更低,而在白天变得偏碱性,这一现象提示肾脏对于H+的排泄似乎也遵循人类的昼夜节律变化 [17] 。对于尿液中蛋白质的排泄,Koopman等人11发现尿白蛋白和β2-微球蛋白的排泄也存在昼夜节律变化,其变化与正常个体的GFR波动相似,而在Buzio等人 [18] 的研究也得出了相似的结论。

2.3. 肾脏激素分泌及血压调节的昼夜节律性

促红细胞生成素(EPO)是红细胞生成过程中必不可少的物质,主要由肾脏分泌。人类血清EPO (S-EPO)水平的昼夜变化于1981年首次在患有慢性肺病和煤矿工人呼吸系统疾病的患者中被描述 [19] 。随后Cotes等人的研究表明,在健康受试者中夜间(晚上8点至凌晨4点) S-EPO水平较高,清晨(凌晨4点至早上8点) S-EPO水平较低 [20] 。Sciesielski等人的研究表明,在小鼠中肾脏中,EPO分泌的昼夜节律调节主要是由昼夜节律激活剂Clock/BMAL1和抑制因子CRY1/CRY2在转录上进行控制的 [21] 。肾脏是循环中肾素的主要来源,肾素的表达和分泌受肾小球旁细胞的调节,在人类中,血浆肾素活性(PRA)具有昼夜节律,早上较高,下午和晚上较低 [22] 。将氧敏感碳糊电极植入大鼠肾脏的实验表明,肾皮质和肾髓质中的氧水平遵循RPF的昼夜规律 [23] ,由于肾脏氧合的振荡与肾脏营养输送的振荡相平行,这些数据强烈表明,肾脏能量的产生也遵循昼夜模式 [9] 。肾脏是参与机体血压调节的重要器官,此前的研究表明,肾脏参与了机体对于血压的昼夜节律调整。例如Bankir等人 [24] 的研究证明,肾脏尿钠排泄的昼夜动态是夜间血压下降的一个重要决定因素。

3. 昼夜节律与肾脏疾病

3.1. 肾结石

肾结石是是最普遍的疾病之一,当尿液中盐分过饱和时,会产生微晶体,从而形成肾结石。如果晶体聚集并附着在尿路上皮上,结石就会生长,当它们达到临界大小时可能最终会分离,堵塞输尿管并导致肾绞痛。过饱和度取决于尿液中溶质的浓度,尿液浓度在白天变化,遵循昼夜节律(白天最高,晚上最低) [25] [26] 。尿液中离子的浓度取决于其排泄率和尿量,均受昼夜节律系统的调控。此外,尿液pH还通过调节尿液中盐的过饱和度强烈地影响结石形成的风险,并表现出昼夜节律 [27] 。总体而言,肾结石形成的风险在清晨增加,此时尿液更集中,酸性更强。一些干预措施,如睡前喝一杯水,或在夜间通过补充柠檬酸盐使尿液碱化,可能会降低患结石的风险。

3.2. 慢性肾脏病

慢性肾脏病(chronic kidney disease, CKD)作为一个重要的公共卫生问题受到越来越多的关注,在过去的数十年间,其全球范围内的发病率及死亡率逐渐升高 [28] 。有研究显示,短睡眠时间的人更有可能经历eGFR快速下降,如McMullan等人 [29] 的研究探究了短睡眠时间与肾功能快速下降的关系。结果显示与每晚睡眠7~8小时相比,每晚睡眠5小时或以下的参与者发生肾功能快速下降的风险更高(调整后OR:1.79;95%CI:1.06~3.03)。也有研究显示,睡眠时间与CKD呈U型相关,即短睡眠时间和长睡眠时间都与慢性肾脏病的风险增加有关 [30] 。而无论是睡眠时间过短或过长,均是昼夜节律紊乱的表现之一,属于睡眠-觉醒周期的功能障碍 [31] 。

此外,高血压及糖尿病是CKD已知且重要的危险因素。而昼夜节律紊乱本身与高血压、糖尿病等慢性疾病的发生密切相关 [7] [31] 。例如,BMAL1蛋白是生物钟最重要的构成成分之一 [32] ,而编码BMAL1蛋白的基因突变与高血压及2型糖尿病相关 [33] ,而高血压、糖尿病等危险因素可能会进一步损害肾脏导致高血压肾病、糖尿病肾病的发生,最终导致CKD的进展。值得注意的是,昼夜节律紊乱同时可能会导致抑郁症等精神疾病的发生 [31] ,而既往有研究显示,抑郁症与进展为CKD及肾功能快速下降的风险相关 [34] 。

3.3. 其他肾脏疾病

有研究显示,肾病综合征患者的(包括膜性肾病患者)的蛋白尿遵循昼夜节律 [35] ,蛋白排泄峰值出现在16:00左右,其最低点出现在03:00并且与GFR无关 [36] 。昼夜节律紊乱可能会引起肾脏纤维化,例如编码酪蛋白激酶I同工型-ε (casein kinase I isoform-ε)的基因是昼夜节律的重要调节因子,该基因自然突变会导致严重的心脏和肾脏纤维化,从而导致仓鼠肾功能不全和过早死亡 [37] 。夜间多尿症是以夜间尿量增加和夜间排尿频率增加为特征的综合征 [38] ;而夜间遗尿症(或称尿床)的特征是夜间非自愿排尿 [39] 。De Gutchenaere等人指出,患有夜间多尿症的儿童GFR缺乏正常的昼夜节律,同时伴有钠排泄和利尿的昼夜节律异常 [40] 。Dossche等人的一项研究也提出,夜间遗尿症会导致肾脏GFR和电解质排泄的昼夜节律减弱 [41] 。

4. 总结

肾脏的多种生理功能具有昼夜节律性,对于参与维持整个机体的生理性动态平衡具有重要意义。而昼夜节律的改变可能会导致肾脏出现病理状态,从而可能导致相应肾脏疾病的发生发展。故对于肾脏与昼夜节律关系的进一步研究使我们能够扩展和重新定义对肾脏功能及疾病状态的了解,以期能对其进行早期行为干预以达到减缓肾脏疾病发生发展的目的。

参考文献

[1] Pittendrigh, C.S. and Minis, D.H. (1972) Circadian Systems: Longevity as a Function of Circadian Resonance in Dro-sophila Melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 69, 1537-1539.
https://doi.org/10.1073/pnas.69.6.1537
[2] Pittendrigh, C.S. (1993) Temporal Organization: Reflections of a Dar-winian Clock-Watcher. Annual Review of Physiology, 55, 16-54.
https://doi.org/10.1146/annurev.ph.55.030193.000313
[3] Logan, R.W. and McClung, C.A. (2019) Rhythms of Life: Circadian Disruption and Brain Disorders across the Lifespan. Nature Reviews Neuroscience, 20, 49-65.
https://doi.org/10.1038/s41583-018-0088-y
[4] Takahashi, J.S. (2017) Transcriptional Architecture of the Mam-malian Circadian Clock. Nature Reviews Genetics, 18, 164-179.
https://doi.org/10.1038/nrg.2016.150
[5] Reppert, S.M. and Weaver, D.R. (2002) Coordination of Circadian Timing in Mammals. Nature, 418, 935-941.
https://doi.org/10.1038/nature00965
[6] Patke, A., Young, M.W. and Axelrod, S. (2020) Molecular Mechanisms and Physiological Importance of Circadian Rhythms. Nature Reviews Molecular Cell Biology, 21, 67-84.
https://doi.org/10.1038/s41580-019-0179-2
[7] Zimmet, P., Alberti, K.G.M.M., Stern, N., et al. (2019) The Cir-cadian Syndrome: Is the Metabolic Syndrome and Much More! Journal of Internal Medicine, 286, 181-191.
https://doi.org/10.1111/joim.12924
[8] Panda, S. (2019) The Arrival of Circadian Medicine. Nature Reviews En-docrinology, 15, 67-69.
https://doi.org/10.1038/s41574-018-0142-x
[9] Firsov, D. and Bonny, O. (2018) Circadian Rhythms and the Kidney. Nature Reviews Nephrology, 14, 626-635.
https://doi.org/10.1038/s41581-018-0048-9
[10] Carriazo, S., Ramos, A.M., Sanz, A.B., et al. (2020) Chronodis-ruption: A Poorly Recognized Feature of CKD. Toxins (Basel), 12, 151.
https://doi.org/10.3390/toxins12030151
[11] Koopman, M.G., Koomen, G.C., Krediet, R.T., et al. (1989) Circadian Rhythm of Glomerular Filtration Rate in Normal Individuals. Clinical Science (London), 77, 105-111.
https://doi.org/10.1042/cs0770105
[12] Wuerzner, G., Firsov, D. and Bonny, O. (2014) Circadian Glomerular Function: From Physiology to Molecular and Therapeutical Aspects. Nephrology Dialysis Transplantation, 29, 1475-1480.
https://doi.org/10.1093/ndt/gft525
[13] Perrier, E., Demazières, A., Girard, N., et al. (2013) Circadian Variation and Responsiveness of Hydration Biomarkers to Changes in Daily Water Intake. European Journal of Applied Physiology, 113, 2143-2151.
https://doi.org/10.1007/s00421-013-2649-0
[14] Kamperis, K., Hansen, M.N., Hagstroem, S., et al. (2004) The Circadian Rhythm of Urine Production, and Urinary Vasopressin and Prostaglandin E2 Excretion in Healthy Children. Journal of Urology, 171, 2571-2575.
https://doi.org/10.1097/01.ju.0000110421.71910.c0
[15] Manchester, R.C. (1933) The Diurnal Rhythm in Water and Mineral Exchange. Journal of Clinical Investigation, 12, 995-1008.
https://doi.org/10.1172/JCI100569
[16] Hara, M., Minami, Y., Ohashi, M., et al. (2017) Robust Circadian Clock Oscillation and Osmotic Rhythms in Inner Medulla Reflecting Corticomedullary Osmotic Gradient Rhythm in Rodent Kidney. Scientific Reports, 7, 7306.
https://doi.org/10.1038/s41598-017-07767-8
[17] Stanbury, S.W. and Thomson, A.E. (1951) Diurnal Variation in Electrolyte Excretion. Clinical Science, 10, 267-293.
[18] Suzuki, M. and Ikawa, S. (1990) Circadian Variations of Uri-nary Excretions of MicroproTeins and N-acetyl-beta- D-glucosaminidase (NAG) during the Ordinary Activity Day. Ni-hon Jinzo Gakkai Shi, 32, 673-682.
[19] Miller, M.E., Garcia, J.F., Cohen, R.A., et al. (1981) Diurnal Levels of Immu-noreactive Erythropoietin in Normal Subjects and Subjects with Chronic Lung Disease. British Journal of Haematology, 49, 189-200.
https://doi.org/10.1111/j.1365-2141.1981.tb07215.x
[20] Cotes, P.M. and Brozovic, B. (1982) Diurnal Variation of Serum Immunomoreactive Erythropoietin in a Normal Subject. Clinical Endocrinology (Oxford), 17, 419-422.
https://doi.org/10.1111/j.1365-2265.1982.tb01608.x
[21] Sciesielski, L.K., Felten, M., Michalick, L., et al. (2021) The Circadian Clock Regulates Rhythmic Erythropoietin Expression in the Murine Kidney. Kidney International, 100, 1071-1080.
https://doi.org/10.1016/j.kint.2021.07.012
[22] Gordon, R.D., Wolfe, L.K., Island, D.P. and Liddle, G.W. (1966) A Diurnal Rhythm in Plasma Renin Activity in Man. Journal of Clinical Investigation, 45, 1587-1592.
https://doi.org/10.1172/JCI105464
[23] Emans, T.W., Janssen, B., Joles, J.A. and Krediet, C.T.P. (2017) Circadian Rhythm in Kidney Tissue Oxygenation in the Rat. Frontiers in Physiology, 8, 205.
https://doi.org/10.3389/fphys.2017.00205
[24] Bankir, L., Bochud, M., Maillard, M., et al. (2008) Nighttime Blood Pressure and Nocturnal Dipping Are Associated with Daytime Urinary Sodium Excretion in African Subjects. Hyperten-sion, 51, 891-898.
https://doi.org/10.1161/HYPERTENSIONAHA.107.105510
[25] Sidhu, H., Vaidyanathan, S., Wangoo, D., et al. (1989) The Loss of Circadian Rhythmicity of Urinary Solute Excretion in Idiopathic Stone Formers. The British Journal of Urology, 64, 333-335.
https://doi.org/10.1111/j.1464-410X.1989.tb06035.x
[26] Touitou, Y., Touitou, C., Charransol, G., et al. (1983) Alterations in Circadian Rhythmicity in Calcium Oxalate Renal Stone Formers. International Journal of Chronobiology, 8, 175-192.
[27] Bilobrov, V.M., Chugaj, A.V. and Bessarabov, V.I. (1990) Urine pH Variation Dynamics in Healthy Individuals and Stone Formers. Urologia Internationalis, 45, 326-331.
https://doi.org/10.1159/000281730
[28] GBD Chronic Kidney Disease Collaboration (2020) Global, Regional, and National Burden of Chronic Kidney Disease, 1990-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. The Lancet, 395, 709-733.
[29] McMullan, C.J., Curhan, G.C. and Forman, J.P. (2016) Association of Short Sleep Duration and Rapid Decline in Renal Function. Kidney International, 89, 1324-1330.
https://doi.org/10.1016/j.kint.2015.12.048
[30] Sun, H., Qin, K., Zou, C., et al. (2021) The Association of Nighttime Sleep Duration and Quality with Chronic Kidney Disease in Middle-Aged and Older Chinese: A Cohort Study. Sleep Medicine, 86, 25-31.
https://doi.org/10.1016/j.sleep.2021.08.007
[31] Hou, Y., Liu, L., Chen, X., Li, Q. and Li, J. (2020) Association between Circadian Disruption and Diseases: A Narrative Review. Life Sciences, 262, Article ID: 118512.
https://doi.org/10.1016/j.lfs.2020.118512
[32] Bunger, M.K., Wilsbacher, L.D., Moran, S.M., et al. (2000) Mop3 Is an Essential Component of the Master Circadian Pacemaker in Mammals. Cell, 103, 1009-1017.
https://doi.org/10.1016/S0092-8674(00)00205-1
[33] Woon, P.Y., Kaisaki, P.J., Bragança, J., et al. (2007) Aryl Hydrocarbon Receptor Nuclear Translocator-Like (BMAL1) Is Associated with Susceptibility to Hypertension and Type 2 Diabetes. Proceedings of the National Academy of Sciences of the United States of America, 104, 14412-14417.
https://doi.org/10.1073/pnas.0703247104
[34] Liu, M., Zhang, Y., Yang, S., et al. (2022) Bidirectional Relations between Depression Symptoms and Chronic Kidney Disease. Journal of Affective Disorders, 311, 224-230.
https://doi.org/10.1016/j.jad.2022.05.104
[35] Koopman, M.G. and Arisz, L. (1997) Spectrum of Diurnal Rhythms in Glomerular Permeability in Patients with Membranous Nephropathy. Nephrology Dialysis Transplantation, 12, 47-52.
[36] Voogel, A.J., Koopman, M.G., Hart, A.A., et al. (2001) Circadian Rhythms in Systemic Hemodynamics and Renal Function in Healthy Subjects and Patients with Nephrotic Syndrome. Kidney International, 59, 1873-1880.
https://doi.org/10.1046/j.1523-1755.2001.0590051873.x
[37] Martino, T.A., Oudit, G.Y., Herzenberg, A.M., et al. (2008) Circadian Rhythm Disorganization Produces Profound Cardiovascular and Renal Disease in Hamsters. The American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 294, R1675-R1683.
https://doi.org/10.1152/ajpregu.00829.2007
[38] Asplund, R. (1995) The Nocturnal Polyuria Syndrome (NPS). General Pharmacology, 26, 1203-1209.
https://doi.org/10.1016/0306-3623(94)00310-J
[39] Yeung, C.K., Sihoe, J.D., Sit, F.K., Bower, W., Sreedhar, B. and Lau, J. (2004) Characteristics of Primary Nocturnal Enuresis in Adults: An Epidemiological Study. BJU Internation-al, 93, 341-345.
https://doi.org/10.1111/j.1464-410X.2003.04612.x
[40] De Guchtenaere, A., Vande Walle, C., Van Sintjan, P., et al. (2007) Nocturnal Polyuria Is Related to Absent Circadian Rhythm of Glomerular Filtration Rate. Journal of Urology, 178, 2626-2629.
https://doi.org/10.1016/j.juro.2007.08.028
[41] Dossche, L., Raes, A., Hoebeke, P., De Bruyne, P. and Vande Walle, J. (2016) Circadian Rhythm of Glomerular Filtration and Solute Handling Related to Nocturnal En-uresis. Journal of Urology, 195, 162-167.
https://doi.org/10.1016/j.juro.2015.07.079