#### 期刊菜单

Laser Wind Radar-Based Feed Forward Con-trol of Wind Turbine Nacelles with Wind Power Performance Study
DOI: 10.12677/AEPE.2023.113010, PDF, HTML, XML, 下载: 221  浏览: 416

Abstract: Due to the rising demand for energy and the increasingly stringent requirements for energy quality and efficiency, the efficient use of wind energy is a hot topic of research in the field of energy today. Therefore, this thesis focuses on the application of feed-forward control of wind turbine nacelles by laser anemometer radar technology. Through feed-forward control, the wind turbine yaw mechanism and the feedback control system jointly control the pitch angle of the wind turbine to achieve more accurate wind alignment, improve the efficiency of wind energy utilization, and also solve the problems of wind turbine gearbox wear and aging.

1. 引言

2. 激光雷达前馈控制

2.1. 风机种类及应用效率分析

Figure 1. Conventional fan control mode

${P}_{r}={C}_{P}\left(\lambda ,\beta \right){P}_{V}=\frac{1}{2}\rho \pi {R}^{2}{C}_{P}\left(\lambda ,\beta \right){V}^{3}$ (1)

1) 增加风速 $V$ 。可优先开发风速较高的地区；适当增加轮毂高度，也可以达到增加直接作用于叶轮平面风速的目的；

2) 增大扫风面积 $\pi {R}^{2}$ 。应用长叶片；

3) 提高风能捕获效率。

2.2. 技术方案设计

Figure 2. Schematic diagram of the wind turbine conventional control and LIDAR-assisted control structure

2.3. 激光雷达偏航控制机构数学模型

${u}_{a}={R}_{a}{i}_{a}+{L}_{a}\frac{\text{d}{i}_{a}}{\text{d}t}+E$ (2)

${U}_{a}\left(s\right)={K}_{p}\left({\theta }_{c}+\frac{1}{T}{\int }_{0}^{t}{\theta }_{e}\text{d}t+{T}_{D}\frac{\text{d}\theta }{\text{d}t}\right)$ (3)

$\frac{{U}_{a}\left(s\right)}{{\mathcal{C}}_{c}\left(s\right)}={K}_{P}+{K}_{i}\frac{1}{s}+{K}_{d}s$ (4)

Figure 3. Schematic diagram of the wind turbine yaw mechanism

${T}_{e}-{T}_{l}={J}_{m}\frac{\text{d}\omega }{\text{d}t}$

${T}_{e}={K}_{t}{i}_{a}$

$E={K}_{e}\omega$

3. 建模与分析

3.1. 激光雷达建模分析

${v}_{si}={x}_{niL}{u}_{iL}+{y}_{niL}{v}_{iL}+{z}_{niL}{w}_{iL}$ (5)

$\left[\begin{array}{c}\begin{array}{c}{x}_{niL}\\ {y}_{niL}\end{array}\\ {z}_{niL}\end{array}\right]=-\frac{1}{{r}_{iL}}\left[\begin{array}{c}\begin{array}{c}{x}_{iL}\\ {y}_{iL}\end{array}\\ {z}_{iL}\end{array}\right]$ (6)

3.2. 不均匀流场对于风机的影响

$\stackrel{˙}{\beta }=\frac{\text{d}\beta }{\text{d}t}=\frac{\text{d}\beta }{\text{d}v}×\frac{\text{d}v}{\text{d}t}=\frac{\text{d}\beta }{\text{d}v}\stackrel{˙}{v}$ (7)

4. 算例分析

4.1. 整机降载控制

Figure 4. Equivalent fatigue load at the base of the tower

Figure 5. Root equivalent fatigue load

4.2. 恶劣风况控制

Figure 6. Schematic diagram of severe wind conditions control

5. 结论

 [1] 王颖, 张凯锋, 付嘉渝, 等. 2018年中国风电装机容量统计[J]. 风能, 2016(2): 48-63. [2] 国家能源局. 2020年上半年全国风电并网运行情况[EB/OL]. http://www.nea.gov.cn, 2020-07-27. [3] Wada, T. and Kawai S. (2018) Detec-tion of 3D Reflector Code on Guardrail by Using Infrared Laser Radar for Road Information Acquisition., IEICE Trans-actions on Fundamentals of Electronics, Communications and Computer Sciences, E101.A, 1320-1322. https://doi.org/10.1587/transfun.E101.A.1320 [4] Molebny, V. (2017) Method of Locating the Visual Axis Ob-jectively. Ophthalmic & physiological Optics, 37, 326-332. https://doi.org/10.1111/opo.12376 [5] Savvaitov, D.S. and Timashova, L.V. (2004) Technical State of Basic Equipment of Substations and Overhead Transmission Lines and Measures for Raising Their Reliability. Power Tech-nology and Engineering, 38, 285-290. https://doi.org/10.1023/B:HYCO.0000049804.97110.0c [6] Shokrzadeh, S., Jozani, M.J. and Bibeau, E. (2014) Wind Turbine Power Curve Modeling Using Advanced Parametric and Nonparametric Methods. IEEE Transactions on Sustainable Energy, 5, 1262-1269. https://doi.org/10.1109/TSTE.2014.2345059 [7] Kiraci, E., Palit, A., Donnelly, M., et al. (2020) Comparison of In-Line and Off-Line Measurement Systems Using a Calibrated Industry Representative Artefact for Automotive Dimen-sional Inspection. Measurement, 163, Article ID: 108027. https://doi.org/10.1016/j.measurement.2020.108027