|
[1]
|
Zhai, H., Zhao, J., Pu, J., et al. (2021) LncRNA-DUXAP8 Regulation of the Wnt/beta-Catenin Signaling Pathway to In-hibit Glycolysis and Induced Apoptosis in Acute Myeloid Leukemia. Turkish Journal of Haematology, 38, 264-272. [Google Scholar] [CrossRef]
|
|
[2]
|
Allison, M., Mathews, J., Gilliland, T., et al. (2022) Nat-ural Killer Cell-Mediated Immunotherapy for Leukemia. Cancers (Basel), 14, Article No. 843. [Google Scholar] [CrossRef]
|
|
[3]
|
Sarin, S.-K., Pande, A. and Schnabl, B. (2019) Microbiome as a Therapeutic Target in Alcohol-Related Liver Disease. Journal of Hepatology, 70, 260-272. [Google Scholar] [CrossRef]
|
|
[4]
|
Landman, C. and Quevrain, E. (2016) Gut Microbiota: Description, Role and Pathophysiologic Implications. La Revue de Médecine Interne, 37, 418-423. [Google Scholar] [CrossRef]
|
|
[5]
|
Grandt, C.-L., Brackmann, L.-K., Poplawski, A., et al. (2022) Radiation-Response in Primary Fibroblasts of Long-Term Survivors of Childhood Cancer with and without Second Pri-mary Neoplasms: The KiKme Study. Molecular Medicine, 28, Article No. 105. [Google Scholar] [CrossRef]
|
|
[6]
|
Rothschild, D., Weissbrod, O., Barkan, E., et al. (2018) Envi-ronment Dominates over Host Genetics in Shaping Human Gut Microbiota. Nature, 555, 210-215. [Google Scholar] [CrossRef]
|
|
[7]
|
DeFilipp, Z., Hohmann, E., Jenq, R.-R., et al. (2019) Fecal Microbiota Transplantation: Restoring the Injured Microbiome after Allogeneic Hematopoietic Cell Transplantation. Biology of Blood and Marrow Transplantation, 25, e17-e22. [Google Scholar] [CrossRef]
|
|
[8]
|
Vivarelli, S., Salemi, R., Candido, S., et al. (2019) Gut Microbiota and Cancer: From Pathogenesis to Therapy. Cancers (Basel), 11, Article No. 38. [Google Scholar] [CrossRef]
|
|
[9]
|
Marcotte, E.-L., Richardson, M.-R., Roesler, M.-A., et al. (2018) Cesarean Delivery and Risk of Infant Leukemia: A Report from the Children’s Oncology Group. Cancer Epide-miology, Biomarkers & Prevention, 27, 473-478. [Google Scholar] [CrossRef]
|
|
[10]
|
Zhou, Y.-J., Zhao, D.-D., Liu, H., et al. (2017) Cancer Killers in the Human Gut Microbiota: Diverse Phylogeny and Broad Spectra. Oncotarget, 8, 49574-49591. [Google Scholar] [CrossRef]
|
|
[11]
|
Ostgard, L.S.G., Norgaard, M., Pedersen, L., et al. (2018) Auto-immune Diseases, Infections, Use of Antibiotics and the Risk of Acute Myeloid Leukaemia: A National Popula-tion-Based Case-Control Study. British Journal of Haematology, 181, 205-214. [Google Scholar] [CrossRef]
|
|
[12]
|
Chiba, S. (2016) Significance of TET2 Mutations in Myeloid and Lymphoid Neoplasms. Rinsho Ketsueki, 57, 715-722.
|
|
[13]
|
Meisel, M., Reinhard, H., Alain, P., et al. (2018) Microbial Signals Drive Pre-Leukaemic Myeloproliferation in a Tet2-Deficient Host. Nature (London), 557, 580-584. [Google Scholar] [CrossRef]
|
|
[14]
|
Zhang, Y., Yu, X., Lin, D., et al. (2017) Propiece IL-1alpha Facil-itates the Growth of Acute T-Lymphocytic Leukemia Cells through the Activation of NF-kappaB and SP1. Oncotarget, 8, 15677-15688. [Google Scholar] [CrossRef]
|
|
[15]
|
Mauray, A., Felgines, C., Morand, C., et al. (2010) Bilberry An-thocyanin-Rich Extract Alters Expression of Genes Related to Atherosclerosis Development in Aorta of apo E-Deficient Mice. Nutrition, Metabolism, and Cardiovascular Diseases: NMCD, 22, 72-80.
|
|
[16]
|
Willemsen, M.L.-E. (2003) Short Chain Fatty Acids Stimulate Epithelial Mucin 2 Expression through Differential Effects on Prostaglandin E1 and E2 Production by Intestinal Myofibroblasts. Gut, 52, 1442-1447. [Google Scholar] [CrossRef]
|
|
[17]
|
Illiano, P., Brambilla, R. and Parolini, C. (2020) The Mutual Interplay of Gut Microbiota, Diet and Human Disease. FEBS Journal, 287, 833-855. [Google Scholar] [CrossRef]
|
|
[18]
|
Bai, L., Zhou, P., Li, D., et al. (2017) Changes in the Gastrointestinal Mi-crobiota of Children with Acute Lymphoblastic Leukaemia and Its Association with Antibiotics in the Short Term. Jour-nal of Medical Microbiology, 66, 1297-1307. [Google Scholar] [CrossRef]
|
|
[19]
|
Galloway-Pena, J.-R., Smith, D.-P., Sahasrabhojane, P., et al. (2016) The Role of the Gastrointestinal Microbiome in Infectious Complications during Induction Chemotherapy for Acute My-eloid Leukemia. Cancer, 122, 2186-2196. [Google Scholar] [CrossRef]
|
|
[20]
|
Galloway-Pena, J.-R., Smith, D.-P., Sahasrabhojane, P., et al. (2017) Characterization of Oral and Gut Microbiome Temporal Variability in Hospitalized Cancer Patients. Genome Medicine, 9, Article No. 21. [Google Scholar] [CrossRef]
|
|
[21]
|
Ziegler, M., Han, J.-H., Landsburg, D., et al. (2019) Impact of Levofloxacin for the Prophylaxis of Bloodstream Infection on the Gut Microbiome in Patients with Hematologic Malig-nancy. Open Forum Infectious Diseases, 6, z252. [Google Scholar] [CrossRef]
|
|
[22]
|
Lee, S., Ritchie, E.-K., Miah, S., et al. (2019) Changes in Gut Microbial Diversity and Correlations with Clinical Outcomes in Patients with Newly Diagnosed Acute Myeloid Leukemia (AML) Receiving Intensive Chemotherapy. Blood, 134, Article No. 1336. [Google Scholar] [CrossRef]
|
|
[23]
|
Gyarmati, P., Kjellander, C., Aust, C., et al. (2016) Metagenomic Analysis of Bloodstream Infections in Patients with Acute Leukemia and Therapy-Induced Neutropenia. Scientific Re-ports, 6, Article No. 23532. [Google Scholar] [CrossRef]
|
|
[24]
|
Rashidi, A., Kaiser, T., Shields-Cutler, R., et al. (2019) Dysbiosis Patterns during Re-Induction/Salvage versus Induction Chemotherapy for Acute Leukemia. Scientific Reports, 9, Article No. 6083. [Google Scholar] [CrossRef]
|
|
[25]
|
van Vliet, M.-J., Tissing, W.-J., Dun, C.-A., et al. (2009) Chem-otherapy Treatment in Pediatric Patients with Acute myeloid Leukemia Receiving Antimicrobial Prophylaxis Leads to a Relative Increase of Colonization with Potentially Pathogenic Bacteria in the Gut. Clinical Infectious Diseases, 49, 262-270. [Google Scholar] [CrossRef]
|
|
[26]
|
Kato, S., Hamouda, N., Kano, Y., et al. (2017) Probiotic Bifidobac-terium Bifidum G9-1 Attenuates 5-Fluorouracil-Induced Intestinal Mucositis in Mice via Suppression of Dysbio-sis-Related Secondary Inflammatory Responses. Clinical and Experimental Pharmacology and Physiology, 44, 1017-1025. [Google Scholar] [CrossRef]
|
|
[27]
|
Eriguchi, Y., Takashima, S., Oka, H., et al. (2012) Graft-versus-Host Disease Disrupts Intestinal Microbial Ecology by Inhibiting Paneth Cell Production of Al-pha-Defensins. Blood, 120, 223-231. [Google Scholar] [CrossRef]
|
|
[28]
|
Jenq, R.-R., Taur, Y., Devlin, S.-M., et al. (2015) Intestinal Blautia Is Associated with Reduced Death from Graft- versus-Host Disease. Biology of Blood and Marrow Transplanta-tion, 21, 1373-1383. [Google Scholar] [CrossRef]
|
|
[29]
|
Mathewson, N.-D., Jenq, R., Mathew, A.-V., et al. (2016) Gut Microbiome-Derived Metabolites Modulate Intestinal Epithelial Cell Damage and Mitigate Graft-versus-Host Disease. Nature Immunology, 17, 505-513. [Google Scholar] [CrossRef]
|
|
[30]
|
Mohty, M., Malard, F., D’Incan, E., et al. (2017) Prevention of Dysbiosis Complications with Autologous Fecal Microbiota Transplantation (auto-FMT) in Acute Myeloid Leukemia (AML) Pa-tients Undergoing Intensive Treatment (ODYSSEE Study): First Results of a Prospective Multicenter Trial. Blood, 130, Article No. 2624. [Google Scholar] [CrossRef]
|
|
[31]
|
Mohty, M., Malard, F., Vekhoff, A., et al. (2018) The Odys-see Study: Prevention of Dysbiosis Complications with Autologous Fecal Microbiota Transfer (FMT) in Acute Myeloid Leukemia (AML) Patients Undergoing Intensive Treatment: Results of a Prospective Multicenter Trial. Blood: The Jour-nal of the American Society of Hematology, 132, Article No. 1444. [Google Scholar] [CrossRef]
|
|
[32]
|
DeFilipp, Z., Peled, J.-U., Li, S., et al. (2018) Third-Party Fe-cal Microbiota Transplantation Following allo-HCT Reconstitutes Microbiome Diversity. Blood Advances, 2, 745-753. [Google Scholar] [CrossRef]
|
|
[33]
|
Bilinski, J., Grzesiowski, P., Sorensen, N., et al. (2017) Fecal Microbiota Transplantation in Patients with Blood Disorders Inhibits Gut Colonization with Antibiotic-Resistant Bacteria: Results of a Prospective, Single-Center Study. Clinical Infectious Diseases, 65, 364-370. [Google Scholar] [CrossRef]
|
|
[34]
|
Kaito, S., Toya, T., Yoshifuji, K., et al. (2018) Fecal Microbiota Transplan-tation with Frozen Capsules for a Patient with Refractory Acute Gut Graft-versus-Host Disease. Blood Advances, 2, 3097-3101. [Google Scholar] [CrossRef]
|
|
[35]
|
Koontz, J.-M., Dancy, B.C.R., Horton, C.-L., et al. (2019) The Role of the Human Microbiome in Chemical Toxicity. International Journal of Toxicology, 38, 251-264. [Google Scholar] [CrossRef]
|
|
[36]
|
Ma, W., Mao, Q., Xia, W., et al. (2019) Gut Microbiota Shapes the Efficiency of Cancer Therapy. Frontiers in Microbiology, 10, Article No. 1050. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Alexander, J.-L., Wilson, I.-D., Teare, J., et al. (2017) Gut Micro-biota Modulation of Chemotherapy Efficacy and Toxicity. Nature Reviews Gastroenterology & Hepatology, 14, 356-365. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Huang, K., Liu, Y., Tang, H., et al. (2019) Glabridin Prevents Dox-orubicin-Induced Cardiotoxicity through Gut Microbiota Modulation and Colonic Macrophage Polarization in Mice. Frontiers in Pharmacology, 10, Article No. 107. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Urushiyama, D., Suda, W., Ohnishi, E., et al. (2017) Microbiome Profile of the Amniotic Fluid as a Predictive Biomarker of Perinatal Outcome. Scientific Reports, 7, Article No. 12171. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Bajaj, J.-S., Thacker, L.-R., Fagan, A., et al. (2018) Gut Micro-bial RNA and DNA Analysis Predicts Hospitalizations in Cirrhosis. JCI Insight, 3, Article No. 98019. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Mego, M., Holec, V., Drgona, L., et al. (2013) Probiotic Bacteria in Cancer Patients Undergoing Chemotherapy and Radiation Therapy. Complementary Therapies in Medicine, 21, 712-723. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Reyna-Figueroa, J., Barron-Calvillo, E., Garcia-Parra, C., et al. (2019) Probiotic Supplementation Decreases Chemotherapy-Induced Gastrointestinal Side Effects in Patients with Acute Leukemia. Journal of Pediatric Hematology/Oncology, 41, 468-472. [Google Scholar] [CrossRef]
|
|
[43]
|
Gerbitz, A., Schultz, M., Wilke, A., et al. (2004) Probiotic Effects on Experimental Graft-versus-Host Disease: Let Them Eat Yogurt. Blood, 103, 4365-4367. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Redman, M.-G., Ward, E.-J. and Phillips, R.-S. (2014) The Effi-cacy and Safety of Probiotics in People with Cancer: A Systematic Review. Annals of Oncology, 25, 1919-1929. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Evrensel, A. and Ceylan, M.-E. (2016) Fecal Microbiota Transplanta-tion and Its Usage in Neuropsychiatric Disorders. Clinical Psychopharmacology and Neuroscience, 14, 231-237. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Scher, J.-U., Ubeda, C., Artacho, A., et al. (2015) Decreased Bac-terial Diversity Characterizes the Altered Gut Microbiota in Patients with Psoriatic Arthritis, Resembling Dysbiosis in In-flammatory Bowel Disease. Arthritis & Rheumatology, 67, 128-139. [Google Scholar] [CrossRef] [PubMed]
|