支气管哮喘的非药物治疗:当前知识与未来视角
Non-Pharmacological Treatment of Bronchial Asthma: Current Knowledge and Future Perspectives
DOI: 10.12677/ACM.2023.1381844, PDF, 下载: 146  浏览: 295 
作者: 韩 爽:青岛大学医学部,山东 青岛;张春玲*:青岛大学附属青岛市中心医院呼吸与危重症医学科,山东 青岛
关键词: 支气管哮喘非药物治疗Bronchial Asthma Non-Drug Treatment Methods
摘要: 支气管哮喘是最常见的慢性炎症性气道疾病之一,呈反复发作的喘息、气急、胸闷及咳嗽,全世界有超过3.3亿人患有哮喘,每年导致全球约25万人死亡,全球疾病负担(GBD)研究显示,虽然一些国家的哮喘相关住院和死亡人数有所下降,但在过去30年中,全球因急性加重和日常症状而承受的负担增加了近20%。糖皮质激素是哮喘药物治疗的基石,尽管进行了有效的药物治疗,支气管哮喘仍继续损害大多数患者的生活质量。因此,非药物治疗如呼吸训练及支气管热成形术等治疗方法逐渐成为了支气管哮喘药物治疗的有效补充及部分替代。本文就支气管哮喘的非药物治疗方法做一综述。
Abstract: Bronchial asthma is one of the most common chronic inflammatory airway diseases, characterized by recurrent wheezing, dyspnea, chest tightness and coughing. More than 330 million people worldwide suffer from asthma, which causes about 250,000 deaths annually. The Global Burden of Disease (GBD) study shows that, although the number of asthma-related hospitalizations and deaths has declined in some countries, the burden of acute exacerbations and daily symptoms has increased by nearly 20% globally in the past 30 years. Glucocorticoids are the cornerstone of asth-ma drug therapy, but bronchial asthma continues to impair the quality of life of most patients de-spite effective drug treatment. Therefore, non-drug treatments such as breathing training and bronchial thermoplasty have gradually become effective supplements and partial alternatives to bronchial asthma drug therapy. This article reviews the non-drug treatment methods for bronchial asthma.
文章引用:韩爽, 张春玲. 支气管哮喘的非药物治疗:当前知识与未来视角[J]. 临床医学进展, 2023, 13(8): 13198-13206. https://doi.org/10.12677/ACM.2023.1381844

1. 当前知识

1.1. 戒烟

吸烟是最重要的可预防的公共卫生问题之一。在怀孕期间和儿童早期接触烟草烟雾都会使儿童的肺部出现不可逆的损伤,并增加他们的哮喘风险。成年人接触烟草烟雾也会增加他们的哮喘风险。被动暴露于烟草厌恶和主动吸烟都会加重哮喘。此外,与非吸烟者相比,吸烟哮喘患者患COPD的风险更高。 [1] [2] 。哮喘患者吸烟不良反应背后的机制是气道炎症改变和糖皮质激素不敏感。医生应鼓励目前吸烟的哮喘患者尽快戒烟。在每次就诊时,吸烟者都应接受戒烟治疗。

1.2. 环境改善

暴露于空气污染是哮喘发展和引发哮喘症状的重要危险因素。减少空气中病原体的暴露可以显著改善症状 [3] 。2019年Paul K Henneberger等人对工作场所采取干预措施治疗哮喘进行了系统评价。结果表明与持续暴露相比,脱离暴露和减少暴露都可以改善哮喘症状。与持续暴露相比,脱离暴露会改善肺功能,所以我们建议改善家庭和工作场所环境,确保良好的通风,避免吸入杀虫剂,熏香和尘螨等以减少哮喘刺激 [4] 。对于成人哮喘患者,医生有必要在工作场所细节和职业方面采集病史 [5] 。

1.3. 呼吸训练

在哮喘患者中,表现为过度通气的呼吸功能障碍可导致呼吸困难。呼吸训练是纠正呼吸功能障碍的常用方法 [6] [7] 。呼吸训练通常减少了呼吸频率和每分通气量,增加了腹部及外侧胸肌的使用,鼓励鼻呼吸以及放松心情。其方法主要包括Papworth呼吸法,Buteyko呼吸法,瑜伽呼吸法,腹式呼吸法等 [8] [9] 。研究表明,呼吸训练可以减轻过度通气症状,改善肺功能,提高生活质量,减轻情绪压力 [10] 。

1.4. 支气管热成形术

支气管热成形术是一种新型的支气管哮喘治疗方法,其通过插入支气管树的导管向支气管输送射频产生热量,消融气道平滑肌层。它被批准用于治疗严重的持续性哮喘 [11] [12] 。多项大型临床试验,包括最近的“真实世界”研究显示,重度哮喘患者的支气管成型术可显著改善哮喘控制,肺功能和生活质量,减少哮喘症状严重恶化、急诊科就诊及住院治疗次数,同时哮喘治疗总费用显著降低 [13] 。支气管成形术的关键在于正确识别患者、实施正确的支气管成形术技术以及严格的术后护理和后续工作 [14] 。由于支气管热成形术只治疗少量中央气道,关于它的精确作用原理的争论仍在进行中,大多数人认为它可以降低气道收缩和支气管反应中涉及的选择性结构异常,包括支气管平滑肌、神经内分泌上皮细胞和支气管神经末梢,中央气道的结构改变导致小气道重开级联,并通过减少全肺流动模型的空间异质性显著改善肺功能 [15] 。

1.5. 三伏贴

三伏贴作为呼吸道疾病的外部疗法,在中国已经广泛使用了300多年。三伏贴是一种草药贴片,遵循冬病夏治理论,仅在三伏天应用于特定穴位,通过穴位刺激和药物渗透吸收,产生预防和治疗效果。常用穴位为定喘穴、肺俞穴、肾俞穴、足三里穴、天突穴等 [16] 。哮喘是三伏贴预防性治疗的最常见疾病,可有效降低哮喘症状发作频率,减少对伴随药物的需求,改善肺功能和生活质量 [17] 。

1.6. 骨疗法手法治疗

骨疗法手法治疗始于1870年,哮喘是现有学术文献中最早记录通过骨疗法手法治疗成功治疗的疾病之一 [18] 。主要改善哮喘患者的3个方面:解决胸椎和肋骨的躯体功能障碍、改善膈肌功能以及平衡交感神经和副交感神经失调。从生物化学角度来看,骨疗法手法治疗会使机体皮质醇水平降低以及血清素和多巴胺水平升高 [19] 。LaQuita M Jones等人于2021年的随机临床试验提供了骨疗法手法治疗益处的证据,研究表明与各种对照干预措施相比,骨疗法手法治疗可显著减轻哮喘 [20] 。

1.7. 针灸

世卫组织在1979年列出了哮喘和其他42种针灸适应症,先前的研究表明,针灸能有效缓解哮喘症状,并可作为哮喘常规医学管理的辅助治疗,针灸改善了肺功能,减少了药物剂量 [21] 。我们之前的临床研究发现,针灸降低了哮喘患者恶化的程度和频率,并且对过敏性哮喘患者的粘膜和细胞免疫有调节作用 [22] 。

1.8. 治疗性患者教育

治疗性患者教育是帮助患者获得和保持自我管理慢性病必要技能的方法,有研究结果显示了治疗性患者教育对哮喘控制的积极影响 [23] 。

1.9. 适度有氧运动

适量有氧运动可以改善哮喘控制,提高运动能力及耐力,改善肺功能,减少呼吸困难症状,改善生活质量 [24] 。运动还可以通过减少哮喘发作,减少抗生素、糖皮质类固醇使用,减少急诊室就诊来降低对医疗保健服务的依赖。推荐的运动包括游泳、跑步、骑自行车、打太极拳、做瑜伽等 [25] 。

1.10. 控制体重

肥胖是哮喘的主要危险因素,也是疾病加重因素。肥胖受试者患哮喘的风险增加,肥胖哮喘患者的症状更多,加重更频繁和更严重,对几种哮喘药物的反应降低,生活质量下降 [26] 。这潜在机制包括肥胖与哮喘共同的遗传成分、饮食和营养因素、肠道微生物组的改变、全身炎症、代谢异常以及肺部解剖结构和功能的变化等 [27] ,越来越多的证据表明,减肥干预有助于改善哮喘患者结局 [28] 。建议体重减轻基线的10%以上,以控制哮喘和改善肺功能 [29] 。

1.11. 氧疗和机械通气

适当的吸氧对哮喘患者可以产生一定的益处,哮喘急性发作时由于支气管痉挛导致肺通气不足,从而导致高碳酸血症和低氧血症。对于低氧血症为主的哮喘患者,应进行氧气治疗,确保对重要器官的氧供应,缓解组织缺氧。对于出现2型呼吸衰竭的患者,可因吸入高浓度氧气而出现呼吸抑制,应权衡使用 [30] 。

急性重度哮喘可引起呼吸力学的显著改变,其特征是呼气血流量严重受限,气道阻力呈异质性和可逆性增加,导致气道过早闭合、肺和胸壁动态过度充气 [31] 。这些异常会增加呼吸功,并可能导致呼吸肌疲劳和危及生命的呼吸衰竭,在这种情况下,机械通气可以挽救生命,进行机械通气时,主要关注的是肺过度充气加重和诱发或加重血流动力学不稳定的风险 [32] 。

1.12. 岩盐气溶胶疗法

岩盐气溶胶疗法是由最初在被废弃盐矿井中进行洞穴居留发展而成的,其基础是用人工方法造成参数与地下盐井治疗洞穴内相近的微气候。岩盐气溶胶疗法的核心作用因子是干性高弥散度Nacl气溶胶,岩盐气溶胶经呼吸进入人体呼吸系统,通过改变呼吸系统的内部微环境,从而促进粘液纤毛廓清作用,减轻支气管壁水肿。岩盐气溶胶对呼吸道局部代谢和免疫过程也有良好影响,它会引起神经末梢鞘膜去极化,从而降低气道张力,细胞形态学研究和细菌学研究证明岩盐气溶胶对呼吸道有杀菌抗炎作用,改善肺泡巨噬细胞的功能活动 [33] 。研究表明,岩盐气溶胶疗法可以有效改善支气管哮喘患者肺功能及临床症状 [34] 。

1.13. 心理治疗

哮喘患者的症状可能是由心理因素引发的,有证据表明,情绪压力可以诱发或加剧急性和慢性哮喘 [35] 。流行病学研究证实,患有抑郁症和焦虑症的人群,哮喘的发病率高于一般人群。应激轴、免疫和自主神经系统的改变似乎是这些疾病共同的发病机制 [36] 。此外,患者对药物治疗的依从性可能有心理层面影响。心理治疗旨在减轻症状负担并改善疾病的管理。心理治疗模型根据其理论基础分为认知行为疗法、认知疗法、行为疗法、放松疗法、生物反馈疗法、“支持性”咨询、个人和小组形式社交互动 [37] [38] 。

1.14. 低水平激光治疗

低水平激光治疗应用一种波长为600~1000 nm的连续激光或发光二极管进行照射,生物组织在吸收了低水平激光的能量后,其能量状态发生变化,通过微弱发热效应和光化学刺激作用刺激组织发挥作用 [39] [40] 。数百项研究结果证明了低水平激光治疗在支气管哮喘患者方面的有效性 [41] [42] [43] [44] 。L.V. Vasilieva首先在1999年揭示了低水平激光治疗在支气管哮喘中的作用:刺激β-肾上腺素能受体;增加淋巴细胞和白细胞的功能活性,以及中性粒细胞和单核细胞的吞噬活性;免疫球蛋白水平和循环免疫复合物正常化;恢复血液聚集状态 [44] 。通过上述机制低水平激光治疗可以显着降低哮喘发作的频率和严重程度,减少用药量。相较于长期应用糖皮质激素所产生的副作用,低水平激光治疗副作用很小,且它是非侵入性的,相对便宜且易于应用,目前主要在俄罗斯得到较为广泛的研究及应用。

2. 未来视角

2.1. 低剂量放射治疗

临床上普遍认为,单剂量低于1.0 Gy的低剂量放射治疗可以对炎症性疾病和疼痛的退行性疾病发挥抗炎和镇痛作用 [45] ,1986年首次报道了急性关节炎动物模型中的低剂量放射治疗会使关节肿胀减少,低剂量放射治疗在急性局部炎症中的疗效得到独立证实,随后逐渐出现了缓解慢性局部炎症和全身炎症的实验证据。使用低剂量放射治疗肺部疾病已有80多年的历史,Calabrese和Dhawan于2013年回顾了20世纪低剂量放射治疗应用于肺炎的历史,低剂量放射治疗应用于肺炎收获了了良好的反应率,将肺炎死亡率从平均约30%降低到10%,临床症状的快速逆转,大大降低了肺炎的严重程度 [46] ,但随着青霉素及各类抗生素的发现,对于低剂量放射治疗的抗炎机制的早期研究并没有持续很久。近年来随着COVID-19全球大流行使研究人员再次考虑低剂量放射治疗在减轻COVID-19危及生命的症状严重程度方面的抗炎作用,对低剂量放射治疗研究的沉默被打破 [47] ,目前的研究表明,低剂量放射治疗的抗炎机制主要是由于降低了e-选择素表达,下调CCL20释放,增加转录因子NF-kB活性,增加转化生长因子-β1的表达,减少了白细胞和单个核细胞对内皮细胞的黏附;低剂量放射治疗增加了PBMCs的凋亡,导致TNF-a和IL-1的产生减少,L-选择素的表达减少,丝裂原活化蛋白激酶和蛋白激酶B的表达降低以及抗炎细胞因子IL-10的产生增加。低剂量放射治疗后的巨噬细胞可降低NO的产生和iNOS蛋白的表达,增加血红素氧合酶-1和HSP-70的表达。LDRT显著降低了氧化爆发活性和超氧化物的产生,导致自由基的产生和释放减少,这共同营造了一个抗炎环境 [48] [49] [50] [51] 。低剂量放射治疗的抗炎机制为哮喘的治疗提供了一种新的可能。

Mitsunobu等人在2003年使9名哮喘患者在高湿度的温泉室中进行了一项试点研究,应用氡水平为2.080 kBq∙m−3的鼻吸摄取法进行低剂量放射治疗,经治疗,患者过氧化氢酶(CAT)活性显著增加。超氧化物歧化酶(SOD)活性显着增加,过氧化脂水平显着降低。一秒用力呼气量显著增加,成功改善了哮喘患者的肺功能 [52] 。有实验评估了低剂量放射治疗对过敏性哮喘小鼠模型影响。结果显示暴露于低剂量率慢性照射可显著降低炎症细胞数量、甲基胆碱反应性(PenH值)以及OVA特异性免疫球蛋白E、白细胞介素(IL)-4和IL-5的水平。此外,气道炎症和肺组织中粘液的产生减弱 [53] 。目前低剂量放射治疗还没有在临床上应用于哮喘患者,但这无疑是一种潜在的有价值的治疗方法。

2.2. 靶向肺去神经支配术

肺的副交感神经传出神经支配是肺乙酰胆碱的主要来源。吸入抗胆碱能药物可通过降低平滑肌的肌肉张力和粘液生产等来减少气道阻力,从而改善慢性阻塞性肺疾病及哮喘患者的肺功能和症状 [54] 。

靶向肺去神经支配术是一种新型的支气管镜疗法,可消融肺部副交感神经,从而减少乙酰胆碱的释放,其主要靶标是迷走神经肺分支内运动神经元的节前轴突 [55] 。这种疗法理想情况下会破坏这些运动轴突,并使之纤维化以防止其再生,发挥与抗胆碱药物类似的作用机制。靶向肺去神经支配术通过双冷却射频导管实施操作,可定位组织加热的深度,从而在主支气管周围产生一个狭窄的消融带,破坏主支气管外侧延伸的神经分支内的运动轴突,最终效应是针对深度组织及神经进行消融 [56] 。

除了迷走神经去神经的影响外,消融的潜在手术并发症包括对预期靶标附近结构的附带损害。对绵羊及狗的动物模型研究表明靶向肺去神经支配术对支气管上皮、软骨、脉管系统和其他支气管周围结构的损害很小 [57] [58] 。

靶向肺去神经支配术首先在慢性阻塞性肺病患者中进行了评估。Slebos DJ等人认为,这种基于主支气管副交感神经消融的新型支气管镜疗法是可行的、安全的和耐受性良好的 [59] 。

全球首个靶向肺去神经支配术治疗严重哮喘受试者的前瞻性研究于2017年开始实验。两名严重哮喘患者在全身麻醉下接受了肺去神经支配术。在长达1年的时间里,没有报告与治疗相关的严重不良事件,咳嗽症状有所改善,其中1名受试者的药物使用明显减少 [60] 。总之,肺去神经支配术在两名受试者中都是安全的,它是哮喘患者群体的潜在未来疗法。但需要更多的证据来阐明其在哮喘中的安全性和有效性。

3. 总结

哮喘是一种异质性疾病,其特征是气道慢性炎症,它影响了大约5%的世界人口,且发病率仍在上升,尽管治疗哮喘的有效方法越来越多,但仍需不断探索与进步。哮喘在规范化诊治中经常出现接受药物治疗的哮喘患者依从性较低的现象。所以,非药物治疗在支气管哮喘的治疗中发挥着有效补充及部分替代的作用,它可以在一定程度上减少哮喘急性发作次数,改善症状,减少气道炎症,减少长期服用糖皮质激素带来的副作用,同时为应用激素不敏感的哮喘重症患者提供新的有效的治疗方案。更多的哮喘非药物治疗方法正有待医学研究人员来阐明其在哮喘治疗中的安全性和有效性,并进行深入研究,这可以为临床合理治疗提供科学依据和理论支持,为支气管哮喘治疗的标准化和规范化做出贡献。

NOTES

*通讯作者。

参考文献

[1] Reddel, H.K., Bacharier, L.B., Bateman, E.D., et al. (2022) Global Initiative for Asthma Strategy 2021: Executive Sum-mary and Rationale for Key Changes. European Respiratory Journal, 59, 14-35.
https://doi.org/10.1111/resp.14174
[2] Pietinalho, A., Pelkonen, A. and Rytilä, P. (2009) Linkage between Smoking and Asthma. Allergy, 64, 1722-1727.
https://doi.org/10.1111/j.1398-9995.2009.02208.x
[3] Boulet, L.P., Fitzgerald, J.M. and Reddel, H.K. (2015) The Revised 2014 GINA Strategy Report: Opportunities for Change. Current Opinion in Pulmonary Medicine, 21, 1-7.
https://doi.org/10.1097/MCP.0000000000000125
[4] Henneberger, P.K., Patel, J.R., De Groene, G.J., et al. (2019) Workplace Interventions for Treatment of Occupational Asthma. Cochrane Database of Systematic Reviews, 10, CD006308.
https://doi.org/10.1002/14651858.CD006308.pub4
[5] Szram, J. and Cullinan, P. (2013) Medical Surveillance for Prevention of Occupational Asthma. Current Opinion in Allergy and Clinical Immunology, 13, 138-144.
https://doi.org/10.1097/ACI.0b013e32835e1212
[6] Vagedes, J., Helmert, E., Kuderer, S., et al. (2021) The Buteyko Breathing Technique in Children with Asthma: A Randomized Controlled Pilot Study. Complementary Thera-pies in Medicine, 56, Article ID: 102582.
https://doi.org/10.1016/j.ctim.2020.102582
[7] Coulson, E., Carpenter, L.M., Georgia, T.E., et al. (2022) Breath-ing Exercises in Older Adults with Asthma: A Blinded, Randomized, Placebo-Controlled Trial. Journal of Asthma, 59, 1438-1444.
https://doi.org/10.1080/02770903.2021.1936015
[8] Yang, Z.Y., Zhong, H.B., Mao, C., et al. (2016) Yoga for Asthma. Cochrane Database of Systematic Reviews, 4, CD010346.
[9] Das, R.R., Sankar, J. and Kabra, S.K. (2022) Role of Breathing Exercises in Asthma-Yoga and Pranayama. Indian Journal of Pediatrics, 89, 174-180.
https://doi.org/10.1007/s12098-021-03998-w
[10] Santino, T.A., Chaves, G.S., Freitas, D.A., Fregonezi, G.A.F. and Mendonça, K.M.P.P. (2020) Breathing Exercises for Adults with Asthma. Cochrane Database of Systematic Re-views, 3, CD001277.
https://doi.org/10.1002/14651858.CD001277.pub4
[11] Duhamel, D.R. and Hales, J.B. (2010) Bronchial Thermo-plasty: A Novel Therapeutic Approach to Severe Asthma. Journal of Visualized Experiments, 45, e2428.
https://doi.org/10.3791/2428
[12] Nong, Y., Lin, J.T., Chen, X., et al. (2020) [Evaluation of the Effectiveness of Bronchial Thermoplasty in Patients with Severe Asthma in the Real World Two Years after Bronchial Thermoplasty Treatment]. National Medical Journal of China, 100, 1730-1735.
[13] Castro, M., Rubin, A.S., Laviolette, M., et al. (2010) Effectiveness and Safety of Bronchial Thermoplasty in the Treatment of Severe Asthma: A Multicenter, Random-ized, Double-Blind, Sham-Controlled Clinical Trial. American Journal of Respiratory and Critical Care Medicine, 181, 116-124.
https://doi.org/10.1164/rccm.200903-0354OC
[14] Koshy, K., Sha, J., Bennetts, K. and Langton, D. (2021) Safety of Delivering Bronchial Thermoplasty in Two Treatment Sessions. Respiratory Research, 22, Article No. 307.
https://doi.org/10.1186/s12931-021-01901-x
[15] Facciolongo, N., Di Stefano, A., Pietrini, V., et al. (2018) Nerve Ablation after Bronchial Thermoplasty and Sustained Improvement in Severe Asthma. BMC Pulmonary Medicine, 18, Article No. 29.
https://doi.org/10.1186/s12890-017-0554-8
[16] Wen, C.Y., Liu, Y.F., Zhou, L., Zhang, H.X. and Tu, S.H. (2015) A Systematic and Narrative Review of Acupuncture Point Application Therapies in the Treatment of Allergic Rhinitis and Asthma during Dog Days. Evidence-Based Complementary and Alternative Medicine, 2015, Article ID: 846851.
https://doi.org/10.1155/2015/846851
[17] Zhu, L., Zhang, W., Wong, V., et al. (2016) Randomized Trial of Acu-points Herbal Patching in Sanfu Days for Asthma in Clinical Remission Stage. Clinical and Translational Medicine, 5, e5.
https://doi.org/10.1186/s40169-016-0084-7
[18] Schend, J., Rowane, M., Sanan, N. and Hostoffer, S.R. (2020) An Osteopathic Modular Approach to Asthma: A Narrative Review. Journal of Osteopathic Medicine, 120, 774-782.
https://doi.org/10.7556/jaoa.2020.121
[19] Field, T., Hernandez-Reif, M., Diego, M., et al. (2005) Cortisol De-creases and Serotonin and Dopamine Increase following Massage Therapy. International Journal of Neuroscience, 115, 1397-1413.
https://doi.org/10.1080/00207450590956459
[20] Jones, L.M., Regan, C., Wolf, K., et al. (2021) Effect of Osteo-pathic Manipulative Treatment on Pulmonary Function Testing in Children with Asthma. Journal of Osteopathic Medi-cine, 121, 589-596.
https://doi.org/10.1515/jom-2020-0040
[21] Yin, L.M., Wang, Y., Fan, L., et al. (2015) Efficacy of Acupuncture for Chronic Asthma: Study Protocol for a Randomized Controlled Trial. Trials, 16, Article No. 424.
https://doi.org/10.1186/s13063-015-0947-z
[22] Li, M., Zhang, X., Bao, H.P., Li, C.L. and Zhang, P.T. (2017) Acupuncture for Asthma: Protocol for a Systematic Review. Medicine, 96, e7296.
https://doi.org/10.1097/MD.0000000000007296
[23] Zhang, X., Lai, Z., Qiu, R., et al. (2021) Positive Change in Asthma Control Using Therapeutic Patient Education in Severe Uncontrolled Asthma: A One-Year Prospective Study. Asthma Research and Practice, 7, Article No. 10.
https://doi.org/10.1186/s40733-021-00076-y
[24] Pastva, A., Estell, K., Schoeb, T.R., Atkinson, T.P. and Schwiebert, L.M. (2004) Aerobic Exercise Attenuates Airway Inflammatory Responses in a Mouse Model of Atopic Asthma. The Journal of Immunology, 172, 4520-4526.
https://doi.org/10.4049/jimmunol.172.7.4520
[25] Freitas, P.D., Silva, A.G., Ferreira, P.G., et al. (2018) Exercise Improves Physical Activity and Comorbidities in Obese Adults with Asthma. Medicine & Science in Sports & Exercise, 50, 1367-1376.
https://doi.org/10.1249/MSS.0000000000001574
[26] Peters, U., Dixon, A.E. and Forno, E. (2018) Obesity and Asthma. Journal of Allergy and Clinical Immunology, 141, 1169-1179.
https://doi.org/10.1016/j.jaci.2018.02.004
[27] Mims, J.W. (2015) Asthma: Definitions and Pathophysiology. In-ternational Forum of Allergy & Rhinology, 5, S2-S6.
https://doi.org/10.1002/alr.21609
[28] Azmeh, R., Greydanus, D.E., Agana, M.G., et al. (2020) Update in Pediatric Asthma: Selected Issues. Disease-a-Month, 66, Article ID: 100886.
https://doi.org/10.1016/j.disamonth.2019.100886
[29] Sharma, V. and Cowan, D.C. (2021) Obesity, Inflammation, and Severe Asthma: An Update. Current Allergy and Asthma Reports, 21, Article No. 46.
https://doi.org/10.1007/s11882-021-01024-9
[30] Leatherman, J. (2015) Mechanical Ventilation for Severe Asthma. Chest, 147, 1671-1680.
https://doi.org/10.1378/chest.14-1733
[31] Demoule, A., Brochard, L., Dres, M., et al. (2020) How to Ventilate Obstructive and Asthmatic Patients. Intensive Care Medicine, 46, 2436-2449.
https://doi.org/10.1007/s00134-020-06291-0
[32] Oddo, M., Feihl, F., Schaller, M.D. and Perret, C. (2006) Man-agement of Mechanical Ventilation in Acute Severe Asthma: Practical Aspects. Intensive Care Medicine, 32, 501-510.
https://doi.org/10.1007/s00134-005-0045-x
[33] Cao, N., Peng, L.J. and Du, W. (2022) [Meta Analysis of Rock Salt Aerosol Therapy for Respiratory Tract Diseases]. Chinese Journal of Industrial Hygiene and Occupational Diseases, 40, 751-756.
[34] Schuers, M., Chapron, A., Guihard, H., Bouchez, T. and Darmon, D. (2019) Impact of Non-Drug Therapies on Asthma Control: A Systematic Review of the Literature. European Journal of General Practice, 25, 65-76.
https://doi.org/10.1080/13814788.2019.1574742
[35] Van Lieshout, R.J. and Macqueen, G.M. (2012) Relations between Asthma and Psychological Distress: An Old Idea Revisited. Chemical Immunology and Allergy, 98, 1-13.
[36] Håkansson, K., Renzi-Lomholt, M., Backer, V. and Ulrik, C.S. (2022) High Use of Antidepressant Medica-tion in Both Mild-to-Modelate and Possible Severe Asthma—A Nationwide Cohort Study. Journal of Asthma and Al-lergy, 15, 13-23.
https://doi.org/10.2147/JAA.S340522
[37] Yorke, J., Fleming, S. and Shuldham, C. (2005) Psychological Inter-ventions for Children with Asthma. Cochrane Database of Systematic Reviews, 4, CD003272.
https://doi.org/10.1002/14651858.CD003272.pub2
[38] Yorke, J., Fleming, S.L. and Shuldham, C.M. (2006) Psychological Interventions for Adults with Asthma. Cochrane Database of Systematic Reviews, 1, CD002982.
https://doi.org/10.1002/14651858.CD002982.pub3
[39] Azeemi, S., Rafiq, H.M., Ismail, I., Kazmi, S.R. and Azeemi, A. (2019) The Mechanistic Basis of Chromotherapy: Current Knowledge and Future Perspectives. Complemen-tary Therapies in Medicine, 46, 217-222.
https://doi.org/10.1016/j.ctim.2019.08.025
[40] Wickenheisser, V.A., Zywot, E.M., Rabjohns, E.M., et al. (2019) Laser Light Therapy in Inflammatory, Musculoskeletal, and Autoimmune Disease. Current Allergy and Asthma Reports, 19, Article No. 37.
https://doi.org/10.1007/s11882-019-0869-z
[41] Gruber, W., Eber, E., Malle-Scheid, D., et al. (2002) Laser Acu-puncture in Children and Adolescents with Exercise Induced Asthma. Thorax, 57, 222-225.
https://doi.org/10.1136/thorax.57.3.222
[42] Wang, X.Y., Ma, W.J., Liu, C.S. and Li, Y.X. (2014) Effect of Low-Level Laser Therapy on Allergic Asthma in Rats. Lasers in Medical Science, 29, 1043-1050.
https://doi.org/10.1007/s10103-013-1456-5
[43] Dabbous, O.A., Soliman, M.M., Mohamed, N.H., et al. (2017) Evaluation of the Improvement Effect of Laser Acupuncture Biostimulation in Asthmatic Children by Exhaled Inflamma-tory Biomarker Level of Nitric Oxide. Lasers in Medical Science, 32, 53-59.
https://doi.org/10.1007/s10103-016-2082-9
[44] Moskvin, S.V. and Khadartsev, A.A. (2020) Methods of Effective Low-Level Laser Therapy in the Treatment of Patients with Bronchial Asthma (Literature Review). Biomedicine, 10, Ar-ticle 1.
https://doi.org/10.37796/2211-8039.1000
[45] Calabrese, E.J., Dhawan, G., Kapoor, R. and Kozumbo, W.J. (2019) Radiotherapy Treatment of Human inflammAtory Diseases and Conditions: Optimal Dose. Human & Experimental Tox-icology, 38, 888-898.
https://doi.org/10.1177/0960327119846925
[46] Chew, M.T., Daar, E., Khandaker, M.U., et al. (2021) Low Radi-ation Dose to Treat Pneumonia and Other Inflammations. The British Journal of Radiology, 94, Article ID: 20201265.
https://doi.org/10.1259/bjr.20201265
[47] Calabrese, E.J. and Dhawan, G. (2013) How Radiotherapy Was Histor-ically Used to Treat Pneumonia: Could It Be Useful Today? Yale Journal of Biology and Medicine, 86, 555-570.
[48] Kern, P.M. and Keilholz, L. (2009) Radio-Immunological Mechanisms of Anti-Inflammatory Treatment: Is There a Way from the Past into the Future? Autoimmunity, 42, 337-339.
https://doi.org/10.1080/08916930902831027
[49] Arenas, M., Sabater, S., Hernández, V., et al. (2012) An-ti-Inflammatory Effects of Low-Dose Radiotherapy. Indications, Dose, and Radiobiological Mechanisms Involved. Strahlentherapie und Onkologie, 188, 975-981.
https://doi.org/10.1007/s00066-012-0170-8
[50] Salomaa, S., Bouffler, S.D., Atkinson, M.J., Cardis, E. and Hamada, N. (2020) Is There Any Supportive Evidence for Low Dose Radiotherapy for COVID-19 Pneumonia? Interna-tional Journal of Radiation Biology, 96, 1228-1235.
https://doi.org/10.1080/09553002.2020.1786609
[51] Venkatesulu, B.P., Lester, S., Hsieh, C.E., et al. (2021) Low-Dose Radiation Therapy for COVID-19: Promises and Pitfalls. JNCI Cancer Spectrum, 5, pkaa103.
https://doi.org/10.1093/jncics/pkaa103
[52] Rühle, P.F., Wunderlich, R., Deloch, L., et al. (2017) Modulation of the Peripheral Immune System after Low-Dose Radon Spa Therapy: Detailed Longitudinal Immune Monitoring of Patients within the RAD-ON01 Study. Autoimmunity, 50, 133-140.
https://doi.org/10.1080/08916934.2017.1284819
[53] Kim, J.S., Son, Y., Bae, M.J., et al. (2015) Continuous Ex-posure to Low-Dose-Rate Gamma Irradiation Reduces Airway Inflammation in Ovalbumin-Induced Asthma. PLOS ONE, 10, e0143403.
https://doi.org/10.1371/journal.pone.0143403
[54] Mazzone, S.B. and Undem, B.J. (2016) Vagal Afferent Innerva-tion of the Airways in Health and Disease. Physiological Reviews, 96, 975-1024.
https://doi.org/10.1152/physrev.00039.2015
[55] Srikanthan, K., Kistemaker, L., Slebos, D.J., et al. (2022) Tar-geted Lung Denervation Modulates the Mucosal Epithelial Transcriptome in COPD. ERJ Open Research, 8, 00146-2022.
https://doi.org/10.1183/23120541.00146-2022
[56] Slebos, D.J., Klooster, K., Koegelenberg, C.F., et al. (2015) Targeted Lung Denervation for Moderate to Severe COPD: A Pilot Study. Thorax, 70, 411-419.
https://doi.org/10.1136/thoraxjnl-2014-206146
[57] Hummel, J.P., Mayse, M.L., Dimmer, S. and Johnson, P.J. (2019) Physiologic and Histopathologic Effects of Targeted Lung Denervation in an Animal Model. Journal of Applied Physiology, 126, 67-76.
https://doi.org/10.1152/japplphysiol.00565.2018
[58] Pison, C., Shah, P.L., Slebos, D.J., et al. (2021) Safety of Denervation following Targeted Lung Denervation Therapy for COPD: AIRFLOW-1 3-Year Outcomes. Respiratory Research, 22, Article No. 62.
https://doi.org/10.1186/s12931-021-01664-5
[59] Wang, K., Sun, J., Gao, W., et al. (2021) Feasibility, Effective-ness, and Safety of a Novel Cryo-Balloon Targeted Lung Denervation Technique in an Animal Model. Cryobiology, 93, 27-32.
https://doi.org/10.1016/j.cryobiol.2020.03.003
[60] Hartman, J.E., Srikanthan, K., Caneja, C., et al. (2022) Bronchoscopic Targeted Lung Denervation in Patients with Severe Asthma: Preliminary Findings. Respiration, 101, 184-189.
https://doi.org/10.1159/000518515