|
[1]
|
Liu, J.J., Chen, S., Zühlke, L., et al. (2019) Global Birth Prevalence of Congenital Heart Defects 1970-2017: Updated Systematic Review and Meta-Analysis of 260 Studies. International Journal of Epidemiology, 48, 455-463. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
刘迎龙, 苏俊武. 建国70年来我国先天性心脏病诊治回顾与进展[J]. 中国医药, 2019, 14(9): 1281-1284. [Google Scholar] [CrossRef]
|
|
[3]
|
摩尔∙佩尔绍德 T., 托尔基亚 M. 心血管系统——发育中的人类[M]//发育中的人类: 临床导向的胚胎学. 第11版. 阿姆斯特丹: 爱思唯尔, 2020: 263-314.
|
|
[4]
|
赵颖. 用DHPLC技术进行单纯性先天性心脏病易感基因SORBS2的突变分析[D]: [硕士学位论文]. 广州: 南方医科大学, 2012.[CrossRef]
|
|
[5]
|
孟颖颖. 转录因子家族与先天性心脏病关系的研究进展[J]. 国际儿科学杂志, 2012, 39(2): 128-131. [Google Scholar] [CrossRef]
|
|
[6]
|
金艳梅, 刘彩霞. 转录因子TBX20与先天性心脏病发病机制研究进展[J]. 国际儿科学杂志, 2021, 48(5): 302-305. [Google Scholar] [CrossRef]
|
|
[7]
|
Lim, T.B., Foo, S.Y.R. and Chen, C.K. (2021) The Role of Epigenetics in Congenital Heart Disease. Genes (Basel), 12, 390. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
李晓倩. 双酚A对母胎界面滋养细胞迁移的影响及其机制的研究[D]: [硕士学位论文]. 南京: 南京医科大学, 2016.
|
|
[9]
|
王真. 生长分化因子——8对人绒毛膜滋养层细胞侵袭性的调控作用和机制研究[D]: [硕士学位论文]. 郑州: 郑州大学, 2022.
|
|
[10]
|
Fu, H., Tan, W., Chen, Z., Ye, Z., Duan, Y., Huang, J., Qi, H. and Liu, X. (2022) TOP2A Deficit-Induced Abnormal Decidualization Leads to Recurrent Implantation Failure via the NF-κB Signaling Pathway. Reproductive Biology and Endocrinology, 20, Article No. 142. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Ahmed, S., Mahabbate, K.S., Rekha, R.S., et al. (2011) Arse-nic-Associated Oxidative Stress, Inflammation, and Immune Disruption in Human Placenta and Cord Blood. Environ-mental Health Perspectives, 119, 258-264. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Liu, J., Gunewardena, S., Yue, C.J., Klaassen, C.D., Chorley, B.N. and Corton, J.C. (2020) Transplacental Arsenic Exposure Produced 5-Methylcytosine Methylation Changes and Aberrant microRNA Expressions in Livers of Male Fetal Mice. Toxicology, 435, Article ID: 152409. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
徐倩, 陈益钦, 王琪, 姚镜, 王盼琳, 王文祥. 妊娠期砷暴露对F1代成年雄性大鼠睾酮合成和精子质量的影响[J]. 环境与职业医学, 2022, 39(9): 1038-1044. [Google Scholar] [CrossRef]
|
|
[14]
|
Song, G., Cui, Y., Han, Z.J., et al. (2012) Effects of Choline on Sodi-um Arsenite-Induced Neural Tube Defects in Chick Embryos. Food and Chemical Toxicology, 50, 4364-4374. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
包丽丽, 刘小玲. 心脏疾病中镁离子的临床应用[J]. 内蒙古医学杂志, 2004, 36(12): 1024-1025.
|
|
[16]
|
Topol, E. and Lerman, B.B. (1983) Hypomagnesemic Torsade de Pointes. Amer-ican Journal of Cardiology, 52, 1367-1368. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
杨贵荣, 董果雄, 张社华, 等. 镁对缺血再灌注心脏内皮细胞功能和血小板活化的影响[J]. 中国动脉硬化杂志, 2003, 11(5): 426-428.
|
|
[18]
|
Payandeh, J., Pfoh, R. and Pai, E.F. (2013) The Structure and Regulation of Magnesium Selective Ion Channels. Biochimica et Biophysica Acta, 1828, 2778-2792. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Henson, M.C. and Chedrese, P.J. (2004) Endocrine Disruption by Cadmium, a Common Environmental Toxicant with Paradoxical Effects on Reproduction. Experimental Biology and Medicine (Maywood), 229, 383-392. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Yu, X., Hong, S. and Faustman, E.M. (2008) Cadmi-um-Induced Activation of Stress Signaling Pathways, Disruption of Ubiquitin-Dependent Protein Degradation and Apoptosis in Primary Rat Sertoli Cell-Gonocyte Cocultures. Toxicological Sciences, 104, 385-396. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Doi, T., Puri, P., McCann, A., et al. (2011) Epigenetic Effect of Cad-mium on Global De Novo DNA Hypomethylation in the Cadmium-Induced Ventral Body Wall Defect (VBWD) in the Chick Model. Toxicological Sciences, 120, 475-480. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Thompson, J., Hipwell, E., Loo, H.V., et al. (2005) Effects of Cadmium on Cell Death and Cell Proliferation in Chick Embryos. Re-productive Toxicology, 20, 539-548. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Hudson, K.M., Belcher, S.M. and Cowley, M. (2019) Maternal Cadmium Exposure in the Mouse Leads to Increased Heart Weight at Birth and Programs Susceptibility to Hypertension in Adulthood. Scientific Reports, 9, Article No. 13553. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Wu, X., Chen, Y., Luz, A., Hu, G. and Tokar, E.J. (2022) Car-diac Development in the Presence of Cadmium: An in Vitro Study Using Human Embryonic Stem Cells and Cardiac Or-ganoids. Environmental Health Perspectives, 130, Article ID: 117002. [Google Scholar] [CrossRef]
|
|
[25]
|
Budinger, D., Barral, S., Soo, A.K.S. and Kurian, M.A. (2021) The Role of Manganese Dysregulation in Neurological Disease: Emerging Evidence. The Lancet Neurology, 20, 956-968. [Google Scholar] [CrossRef]
|
|
[26]
|
邵静君. 锰中毒对鸡心脏损伤机制的研究[D]: [硕士学位论文]. 哈尔滨: 东北农业大学, 2008.
|
|
[27]
|
Wang, M., Tian, Y., Yu, P., et al. (2022) Association between Congenital Heart Defects and Maternal Manganese and Iron Concentrations: A Case-Control Study in China. Environmental Science and Pollution Research International, 29, 26950-26959. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Ou, Y.Q., Bloom, M.S., Nie, Z.Q., et al. (2017) Associations between Toxic and Essential Trace Elements in Maternal Blood and Fetal Congenital Heart Defects. Environment International, 106, 127-134. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Salehi, F., Darmiani, K., Nakhaee, S., Zadeh, A.A., Javadmoosa-vi, S.Y., Faghihi, V., et al. (2022) Comparison of Blood Lead Concentrations in Mothers of Children with Congenital Heart Disease and Mothers of Healthy Children. Biological Trace Element Research, 200, 2001-2007. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Liu, Z., Yu, Y., Li, X., Wu, A., Mu, M., Li, N., et al. (2015) Maternal Lead Exposure and Risk of Congenital Heart Defects Occurrence in Offspring. Reproductive Toxicology, 51, 1-6. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
钟龙青. 维生素D与儿童相关疾病研究进展[J]. 实验与检验医学, 2018, 36(1): 1-3.
|
|
[32]
|
Brown, J.M. and Vaidya, A. (2014) Interactions between Adrenal-Regulatory and Calcium-Regulatory Hormones in Human Health. Current Opinion in Endocrinology, Diabetes and Obesity, 21, 193-201. [Google Scholar] [CrossRef]
|
|
[33]
|
Perez-Hernandez, N., Aptilon-Duque, G., Nostro-za-Hernandez, M.C., et al. (2016) Vitamin D and Its Effects on Cardiovascular Diseases: A Comprehensive Review. The Korean Journal of Internal Medicine, 31, 1018-1029. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Banuelos-Chavez, K.V., Cerrillos-Gutierrez, J.I., Nario, J.C., et al. (2017) Diagnosis and Clinical Implications of Vascular Calcification of Chronic Kidney Disease in Mexico. Revista médica del Instituto Mexicano del Seguro Social, 55, S151-S157.
|
|
[35]
|
Wang, J., Zhou, J.J., Robertson, G.R., et al. (2018) Vitamin D in Vascular Calcification: A Double-Edged Sword? Nutrients, 10, 652. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Izumi, G., Inai, K., Shimada, E., et al. (2016) Vitamin D Kinetics and Parathyroid Gland Function in Patients with Congenital Heart Disease. Congenital Heart Disease, 11, 700-706. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Green, J.J., Robinson, D.A., Wilson, G.E., et al. (2006) Calcitriol Modula-tion of Cardiac Contractile Performance via Protein Kinase C. Journal of Molecular and Cellular Cardiology, 41, 350-359. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Bansal, B., Bansal, M., Bajpai, P., et al. (2014) Hypocalcemic Cardiomyopathy-Different Mechanisms in Adult and Pediatric Cases. The Journal of Clinical Endocrinology & Metabo-lism, 99, 2627-2632. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Lupo, P.J., Mitchell, L.E. and Jenkins, M.M. (2019) Genome-Wide As-sociation Studies of Structural Birth Defects: A Review and Commentary. Birth Defects Research, 111, 1329-1342. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Oppola, A., Davi, G., De Stefano, V., et al. (2000) Homocysteine, Coagu-lation, Platelet Function, and Thrombosis. Seminars in Thrombosis and Hemostasis, 26, 243-254. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Wilson, R.D. and O’Connor, D.L. (2021) Maternal Folic Acid and Mul-tivitamin Supplementation: International Clinical Evidence with Considerations for the Prevention of Folate-Sensitive Birth Defects. Preventive Medicine Reports, 24, Article ID: 101617. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Green, N.S. (2002) Folic Acid Supplementation and Prevention of Birth Defects. The Journal of Nutrition, 132, 2356S-2360S. [Google Scholar] [CrossRef]
|
|
[43]
|
Qin, X., Xu, M., Zhang, Y., Li, J., Xu, X., Wang, X., et al. (2012) Effect of Folic Acid Supplementation on the Progression of Carotid Intima-Media Thickness: A Meta-Analysis of Randomized Controlled Trials. Atherosclerosis, 222, 307-313. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Van Beynum, I.M., Kapusta, L., Bakker, M.K., et al. (2010) Protective Effect of Periconceptional Folic Acid Supplements on the Risk of Congenital Heart Defects: A Regis-try-Based Case-Control Study in the Northern Netherlands. European Heart Journal, 31, 464-471. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Mao, B., Qiu, J., Zhao, N., Shao, Y., Dai, W., He, X., et al. (2017) Maternal Folic Acid Supplementation and Dietary Folate Intake and Congenital Heart Defects. PLOS ONE, 12, e0187996. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Tierney, B.J., Ho, T., Reedy, M.V. and Brauer, P.R. (2004) Homocysteine Inhibits Cardiac Neural Crest Cell Formation and Morphogenesis in Vivo. Developmental Dynamics, 229, 63-73. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Son, P. and Lewis, L. (2023) Hyperhomocysteinemia. StatPearls Publishing, Treasure Island.
|
|
[48]
|
Kaye, A.D., Jeha, G.M., Pham, A.D., et al. (2020) Folic Acid Supplementation in Pa-tients with Elevated Homocysteine Levels. Advances in Therapy, 37, 4149-4164. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
孙亚楠. 孕妇维生素A水平与胎儿先天性心脏病的相关研究[J]. 中国保健营养, 2018, 28(2): 112-113. [Google Scholar] [CrossRef]
|
|
[50]
|
王定美, 黄国英. 围孕期营养因素与先天性心脏病发病的关系[J]. 国际儿科学杂志, 2016, 43(11): 840-843. [Google Scholar] [CrossRef]
|
|
[51]
|
Nakatani, S., Mori, K., Shoji, T. and Emoto, M. (2021) Association of Zinc Deficiency with Development of CVD Events in Patients with CKD. Nutrients, 13, Article No. 1680. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Lopez, V., Keen, C.L. and Lanoue, L. (2008) Prenatal Zinc Deficiency: Influence on Heart Morphology and Distribution of Key Heart Proteins in a Rat Model. Biological Trace Element Research, 122, 238-255. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Davis, C.D., Uthus, E.O. and Finley, J.W. (2000) Dietary Sele-nium and Arsenic Affect DNA Methylation in Vitro in Caco-2 Cells and in Vivo in Rat Liver and Colon. The Journal of Nutrition, 130, 2903-2909. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Yang, J.M., Kang, Y.J., Chang, Q.Q., et al. (2022) Maternal Zinc, Copper, and Selenium Intakes during Pregnancy and Congenital Heart Defects. Nutrients, 14, Article No. 1055. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Duffy, J.Y., Overmann, G.J., Keen, C.L., Clegg, M.S. and Daston, G.P. (2004) Cardiac Abnormalities Induced by Zinc Deficiency Are Associated with Alterations in the Expression of Genes Regulated by the Zinc-Finger Transcription Factor GATA-4. Birth Defects Research Part B: Developmental and Repro-ductive Toxicology, 71, 102-109. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Beckers-Trapp, M.E., Lanoue, L., Keen, C.L., Rucker, R.B. and Uriu-Adams, J.Y. (2006) Abnormal Development and Increased 3-Nitrotyrosine in Copper-Deficient Mouse Embryos. Free Radical Biology and Medicine, 40, 35-44. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Gambling, L., Kennedy, C. and McArdle, H.J. (2011) Iron and Copper in Fetal Development. Seminars in Cell & Developmental Biology, 22, 637-644. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Clemente, P., Peralta, S., Cruz-Bermudez, A., et al. (2013) hCOA3 Stabilizes Cytochrome c Oxidase 1 (COX1) and Promotes Cytochrome c Oxidase Assembly in Human Mito-chondria. Journal of Biological Chemistry, 288, 8321-8331. [Google Scholar] [CrossRef]
|
|
[59]
|
Srinivasan, S. and Avadhani, N.G. (2012) Cytochrome c Oxidase Dysfunction in Oxidative Stress. Free Radical Biology and Medicine, 53, 1252-1263. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Sancenón, V., Puig, S., Mateu-Andrés, I., Dorcey, E., Thiele, D.J. and Peñarrubia, L. (2004) The Arabidopsis Copper Transporter COPT1 Functions in Root Elongation and Pollen Development. Journal of Biological Chemistry, 279, 15348-15355. [Google Scholar] [CrossRef]
|
|
[61]
|
Martín, I., Gibert, M.J., Pintos, C., Noguera, A., Besalduch, A. and Obrador, A. (2004) Oxidative Stress in Mothers Who Have Conceived Fetus with Neural Tube Defects: The Role of Aminothiols and Selenium. Clinical Nutrition, 23, 507-514. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Cengiz, B., Söylemez, F., Oztürk, E. and Cavdar, A.O. (2004) Serum Zinc, Selenium, Copper, and Lead Levels in Women with Second-Trimester Induced Abortion Resulting from Neural Tube Defects: A Preliminary Study. Biological Trace Ele-ment Research, 97, 225-235. [Google Scholar] [CrossRef]
|
|
[63]
|
Hammouda, S.A., Abd Al-Halim, O.A. and Mohamadin, A.M. (2013) Serum Levels of Some Micronutrients and Congenital Malformations: A Prospective Co-hort Study in Healthy Saudi-Arabian First-Trimester Pregnant Women. International Journal for Vitamin and Nutrition Research, 83, 346-354. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Shimada, B.K., Alfulaij, N. and Seale, L.A. (2021) The Impact of Selenium Deficiency on Cardiovascular Function. International Journal of Molecular Scienc-es, 22, Article No. 10713. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Liu, Q., Mao, B.H., Li, J.H., Wang, W.D., Du, S.H., Liu, Q. and Yi, B. (2023) A Nested Case-Control Study on the Association of Neonatal Cord Blood Selenium, Iron and Copper with Congenital Heart Disease. Chinese Journal of Preventive Medicine, 57, 200-207. (In Chi-nese)
|
|
[66]
|
Yang, J., Kang, Y., Cheng, Y., Zeng, L., Shen, Y., Shi, G., et al. (2020) Iron Intake and Iron Status during Pregnancy and Risk of Congenital Heart Defects: A Case-Control Study. International Journal of Cardiology, 301, 74-79. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Kalisch-Smith, J.I., Ved, N., Szumska, D., Munro, J., Troup, M., Harris, S.E., et al. (2021) Maternal Iron Deficiency Perturbs Embryonic Cardiovascular Development in Mice. Nature Communications, 12, Article No. 3447. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Han, X.H., Wang, B.Q., Jin, D.X., et al. (2022) Precise Dose of Folic Acid Supplementation Is Essential for Embryonic Heart Development in Zebrafish. Biology, 11, Article No. 28. [Google Scholar] [CrossRef] [PubMed]
|