围孕期重金属因素暴露与营养因素缺乏对先天性心脏病的影响
The Impact of Heavy Metal Exposure and Nu-tritional Deficiency in Pregnant Pregnancy on Fetal Congenital Heart Disease
DOI: 10.12677/ACM.2023.1381922, PDF, HTML, XML,   
作者: 韩江雪, 张文静:西安医学院研究生院,陕西 西安;米 阳:西北妇女儿童医院产科,陕西 西安
关键词: 先天性心脏病围孕期维生素D维生素B12叶酸维生素A 铁蛋白 Congenital Heart Disease Pregnancy Arsenic Cadmium Manganese Lead Vitamin D Vitamin B12 Folic Acid Vitamin A Iron Zinc Copper Selenium
摘要: 随着时代水平的变化,现实压力及新一代的思想自由化越发普遍,这一现象导致全国出生人口率较前显著下滑。公众已将优生优育的态度逐步刻入时代DNA。由于环境及生活方式的因素,怀孕期间接触有毒重金属及各种微量元素缺乏或摄入不足对胎儿发育异常产生了深远的负面影响。本综述以先天性心脏病为例,检索暴露于环境因素和母孕期相关微量元素补充等内部环境因素两方面对先心病的影响及其可能机制的相关文献进行综述,为疾病的预防提供基础。
Abstract: Along with the change of the age level, real pressure and thought liberalization of a new generation are increasingly common, which causes a significant drop in the national birth population rate. The public has gradually etched the attitude of eugenics into the DNA of The Times. Due to environ-mental and lifestyle factors, pregnancy exposure to toxic heavy metals and all kinds of trace ele-ment deficiency or inadequate intake have a profound negative impact on abnormal fetal develop-ment. This review takes congenital heart disease as an example, retrieves the related literature on the effects of environmental factors and micronutrient supplementation during pregnancy on con-genital heart disease and the possible mechanisms, to provide the foundation for the prevention of disease.
文章引用:韩江雪, 米阳, 张文静. 围孕期重金属因素暴露与营养因素缺乏对先天性心脏病的影响[J]. 临床医学进展, 2023, 13(8): 13757-13765. https://doi.org/10.12677/ACM.2023.1381922

1. 引言

先天性心脏病是常见的出生缺陷,占出生缺陷的30%左右。全球相关研究显示近年来先心病发病率呈逐步上升趋势,在2010~2017年达9.41% [1] 。先心病是导致流产、死胎、死产以及新生儿死亡的常见原因,是新生儿非感染性死亡以及5岁以下儿童总死亡的首位原因 [2] ,显然已成为重要的公共卫生问题。从人类胚胎发育的第18天开始,心内膜祖细胞形成心脏管,最终融合,折叠,循环和分隔形成胚胎心脏。心脏从第22天开始跳动,心血管发育的关键敏感期通常被认为是胚胎发育的第3~8周 [3] 。心脏发育的过程受到转录因子、相关基因和信号通路的控制,这些转录因子、基因和信号通路都受到遗传和环境因素的影响 [4] [5] [6] 。大多数先天性心脏异常的病因尚不确定,随着基因测序技术的发展,有研究表明与遗传起源相关的先心病只有35% [7] ,许多流行病学研究显示先心病与多种环境因素暴露相关,随着现代对全面营养的需求细节化要求越来越高,营养摄入种类发生了改变,从而孕妇的营养状况也对妊娠结局产生了直接的影响。

2. 外部相关环境因素及机制

正常的胚胎发育是一个精心编排和强大的过程,但很容易受到外部因素的干扰。这些因素可能是有毒物质过量,也可能是缺乏必需营养素。通常情况下该因子可以直接性或间接性的作用于胚胎本身,比如可通过干扰胎盘的发育和改变胚胎的营养供应从而影响胚胎的发育 [8] [9] [10] 。

2.1. 有毒金属与先天性心脏病

以砷、镉、锰、铅为主的有毒金属是已知的能够穿越胎盘屏障的有毒金属物,我国的重金属污染及微量元素缺乏仍然属于重要公共卫生问题的范畴。

2.2. 砷暴露与先天性心脏病

人们日常生活中砷暴露的主要来源为污染的饮用水和食物。Ahmed S等人认为过量砷元素暴露下能导致细胞脂质发生过氧化,进而产生大量的自由基,损伤DNA,导致DNA单链断裂、碱基氧化损伤等 [11] 。发育中的胚胎受到砷元素大量暴露下进而通过胎盘丰富的脉管系统,并影响胚胎的正常发育 [12] [13] 。过去有研究表明砷暴露还可能会导致神经管缺陷、心血管畸形及唇腭裂等出生缺陷 [14] 。有研究表明砷致胎儿CHD与线粒体超氧化物酶及谷胱甘肽升高、端粒酶转录染色体不稳定、NF-κB通道途经表达改变、抑制细胞凋亡蛋白凋亡等发病机制相关 [15] [16] [17] [18] 。

2.3. 镉暴露与先天性心脏病

镉属于有毒重金属,但仍然被广泛用于金属矿、电镀工业和塑料工业的生产。因此职业暴露、食物及水源摄入成为人们接触镉元素的主要方式。Henson MC等人的相关研究证据支持认为镉的生物半衰期可达20年左右,这将使得镉元素可能长时间的积聚在人类的血液系统、肾脏、肝脏和生殖器官内 [19] 。目前有大量的动物实验发现镉可引起致畸现象,也进一步证明了镉可引起DNA损伤及相关酶类产生的氧化损伤。其中也提到镉影响动物的DNA甲基转移酶3A和3B的表达水平,从而提高体节、侧板中胚层和神经管细胞凋亡的程度,这使得镉暴露能够引起神经管畸形、胚胎吸收及胎儿生长发育减缓的言论得到了证据支撑。并且镉也是影响表观遗传编程的一个重要环境因素 [20] [21] [22] 。据推测,心脏发育期间接触镉可能会增加成年期心血管疾病的风险。Hudson等人随后进行的研究可能部分证实了这一假设,该假设表明,小鼠母亲镉暴露增加了出生时的心脏重量以及后代成年期高血压的风险 [23] ,进一步研究表明,心脏改变可能继发于母体镉暴露引起的必需微量元素谱改变 [24] 。

2.4. 锰暴露与先天性心脏病

锰广泛存在于自然界中,在碎石、采矿、电焊、生产干电池、染料工业等领域发挥重要作用,同时也是人体必需微量元素,锰缺乏和过度锰暴露都会导致ROS增加以及神经损伤 [25] 。曾有学者通过动物实验结果表明锰中毒时可引起心肌损伤,并表示在此过程中呈一定的时间、剂量效应关系,指出其引起心肌毒性的机制可能是由于锰中毒时出现的na + -k + -atpase、ca 2+ -atpase、mg 2+ -atpase活性下降,心肌细胞抗氧化能力降低,心肌线粒体呼吸链复合物活性降低等机制均可提示锰中毒对心肌细胞、心肌线粒体的能量代谢产生干扰性作用 [26] 。一项研究头发中的金属浓度的病例对照研究表明,发锰浓度高的母亲比发锰低的母亲更易生出患有先心病的婴儿 [27] 。

2.5. 铅暴露与先天性心脏病

公众可能通过受污染的食物、水、房屋灰尘以及金属回收和电池工业等工业活动接触铅 [28] 。孕妇产前铅暴露可能会影响后代心脏发育,例如Salehi等人进行的一项病例对照研究显示,冠心病患儿母亲的血铅浓度显著升高 [29] ,此外,一项利用母发铅作为铅暴露生物标志物的研究也发现铅是冠心病的有害因素 [30] 。一项检测了孕17~40周孕妇血液重金属含量的研究表明,与低浓度血铅的母亲相比,中、高浓度血铅与总先心病、圆锥干缺损、间隔缺损和右室流出道梗阻有关。这些结果表明,铅暴露与冠心病之间存在显著的正相关,但铅缺乏对心脏发育的潜在机制仍然需继续研究。

3. 内部相关环境因素

胎儿生长发育所需的全部营养因素来源于母体,20世纪90年代David Barker教授首先提出了都哈(DOHaD)学说,即“健康与疾病发展的起源学说”。其指出不利的产前和早期生活因素,比如在不良生活方式或营养不良的影响下,使原本可正常发育的胚胎在器官、细胞及分子水平发生了一系列的变化,这种变化类似于印迹(imprinting)效应理论中提到的:胎儿发育期的营养或内分泌状态发生改变,这一系列的改变可能会给胎儿留下永久性的“烙印”或“印迹”,并可在出生后对胎儿心脑血管、神经系统的发育及内分泌的代谢产生重要影响。微量元素与胎儿生长发育密切相关,孕妇微量营养素的缺乏,轻则影响胎儿生长引起生长受限,重可导致流产、早产甚至胎儿发育异常。8种常见母体微量营养素:维生素D,维生素B12,叶酸,维生素A,锌,铜,硒和铁蛋白。

3.1. 维生素D与先天性心脏病

维生素D与人类的健康密切相关。VitD3无生物活性,需要与VitD结合蛋白相结合,在肾脏转化为具有功能的1,25-二羟维生素D3。而1,25(OH)2D3只有在维生素D受体的介导下才发挥激素样生物效应 [31] ,VDR均可表达在心肌、血管平滑肌、骨骼肌、皮肤及各种免疫细胞等组织 [32] 。其中维生素D对于胰岛素的敏感性具有一定的调节作用,并且也可通过降低甲状旁腺激素的分泌间接保护心血管系统 [33] [34] [35] 。Izumi [36] 等人通过对103例成人先心病患者血清25羟维生素D进行测定、研究,结果提示维生素D存在可让先天性心脏病患者的心功能进一步恶化的可能。有流行病学研究表明心计肥大和心衰与缺乏维生素D相关。此外维生素D可通过蛋白激酶C改变心肌细胞的收缩性 [37] 。维生素D是维持钙、磷代谢平衡的关键物质,若维生素D出现缺乏将会导致钙代偿异常,可引起继发性甲状腺功能亢进,导致扩张性心肌病的进一步恶性发展 [38] 。

3.2. 维生素B12与先天性心脏病

维生素B12又被称作钴胺素,是人们日常饮食中的必需营养素之一。Vit B12的缺乏可减少辅酶A的生成从而影响细胞的生理功能,并进一步造成胎儿的发育异常。有研究表明,Vit B12缺乏在影响胎儿的生长发育之外,在神经系统、眼部疾病、扩张型心肌病、血液系统等和多种类型的癌症患者体内也发现存在维生素B12水平降低的现象 [39] 。另外,Vit B12的缺乏可导致高同型半胱氨酸血症以及血浆蛋氨酸水平降低,同时叶酸的代谢过程也受到影响。体内维生素B12的缺乏会让细胞产生相关副产物质,这些物质可产生活性氧,随之导致内皮功能障碍、血小板活化和组织因子表达增加,并可引起凝血的级联反应 [40] ,这一系列变化可造成胎儿及胎盘的血供减少。

3.3. 叶酸与先天性心脏病

叶酸(FA)是一种合成的(即通常不是天然存在的)叶酸形式。临床和流行病学研究表明,妊娠期叶酸缺乏可导致出生缺陷,如神经管缺陷(NTD) [41] [42] 。孕妇补充FA对NTD发生和复发的预防作用已得到充分证实,一般认为孕妇补充FA有益于生殖结局,包括CHD的发病率。Qin等人的一项荟萃分析表明,通过补充叶酸可使颈动脉内膜中层厚度(CIMYT)降低,能够有效预防心血管疾病 [43] 。荷兰关于一项给予EUROCAT注册的研究中发现,围孕期叶酸的使用已被证实与冠心病发生率降低有关 [44] 。中国也从出生队列中获得了类似的结果 [45] 。叶酸是体内一碳单位代谢的重要载体来源。当身体缺乏叶酸时,身体通过调节机制保存一碳单位,这可能导致高同型半胱氨酸血症 [46] 。孕晚期血同型半胱氨酸升高对胎盘的脉管系统可能会造成细微的损伤,这种损伤一定程度上会对胎儿的大脑产生负面影响 [47] ;另外高同型半胱血症是与血浆中同型半胱氨酸水平升高相关的一种多器官系统功能障碍综合,其中最显著的是动脉血栓形成、静脉血栓栓塞和心血管疾病早发的风险升高;血浆中同型半胱氨酸的升高一般都是多因素造成的,包括遗传性因素 [48] 。

3.4. 维生素A与先天性心脏病

维生素A对胚胎发生、生长和上皮分化至关重要。大量的实验和流行病学数据强调了营养和遗传因素在先天性心脏缺陷发展中的相互作用。其中维甲酸(RA)是维生素A的衍生物,并可在脊椎动物的发育过程中起着关键作用,包括心脏的形成。维生素A的缺乏和过量都会在产前和产后发育过程中造成严重损害。对动物和人类的营养和临床研究表明,母体维生素A不足可导致胎儿死亡,或包括心脏畸形在内的各种异常(D’Aniello和Waxman,2015年,Wilson等人,1953年)。既往有学者通过动物实验发现,母体内缺少维生素A,会让胎儿出现多系统发育异常的风险性增加,进而增加了先天性缺陷的发生率 [49] 。有研究表明,视黄酸在参与心脏生长发育过程中具有重要作用,而维生素A是否缺乏便成为了关键性因素,可能是通过视黄酸对以下三个方面来调控心脏的发育过程:一是通过核受体RARa2和RARy调节心脏转录因子的表达;二是通过限制侧板中胚层心脏祖细胞的数量;三是具有维持正常的心脏形态构建和心管前后的图式发育的作用 [50] 。

3.5. 锌与先天性心脏病

锌(zinc, Zn)是胎儿心脏正常发育所必需的微量元素,并参与转录因子、醇脱氢酶、铜锌超氧化物歧化酶、碳酸酐酶、RNA聚合酶等多种金属酶的合成和活性调控。因此,锌参与调节基因转录、蛋白质翻译和维持细胞器结构的稳定性 [51] 。有相关研究表明锌参与许多脂质、核酸和蛋白质的合成。缺锌可引起胎心中连接蛋白-43和HNK-1分布的改变,并导致心脏异常的发生 [52] 。缺锌还可激活凋亡和炎症过程,降低心脏组织中TGF-β1表达和一氧化氮合酶活性 [53] 。根据杨娟梅等人 [54] 通过调查孕期母体锌、铜和硒摄入量与冠心病的关联性研究表明,怀孕期间从饮食和补充剂中摄入更多的锌和硒可能会降低冠心病的风险。还表明,怀孕期间大量摄入锌和硒似乎对与冠心病的关联有累加效应。进一步的研究表明,锌缺乏引起的心脏畸形主要参与大血管,流出道及心房和心室的发育,这可能是由于胚胎发育过程中心脏神经嵴细胞(CNCC)的异常分布、数量和功能 [52] [55] 。锌缺乏和过量的锌暴露都可能导致心脏发育异常。

3.6. 铜与先天性心脏病

铜是人体必需的微量元素。除了在包括电子转移和清楚自由基在内的几种生物钟发挥重要作用 [56] ,铜还参与胚胎发育 [57] 。缺铜和过量的铜暴露都可能导致心脏发育异常。铜缺乏会抑制心脏线粒体中COX的活性。缺铜会损害抗氧化防御系统,导致胚胎心脏中的ROS水平升高。此外,由于缺铜而导致的大量NO消耗和eNOS磷酸化水平的降低导致心脏发育过程中NO的生物利用度低。过量的铜暴露也会损害抗氧化防御系统,导致胚胎心脏中的ROS水平升高。铜暴露还会改变发育相关基因(如vezf1)的表达模式,这可能导致心脏发育异常 [58] [59] 。铜离子是发挥基本生物学功能的蛋白质氧化还原化学中的重要催化辅因子,例如细胞色素C氧化酶,Cu/Zn超氧化物歧化酶和铜蓝蛋白。铜具有相对较高的DNA结合亲和力,可能会取代锌指转录因子中的锌离子,并干扰其在胎儿中的功能 [60] ,抑制锌指转录因子(如GATA4和Zac1)可导致胚胎致死、心室壁变薄或原发性心管环状形态发生异常 [55] 。

3.7. 硒与先天性心脏病

硒对抗氧化酶活性和胎儿正常发育至关重要 [61] ,妊娠期缺硒可能导致先天性异常,包括神经管缺陷和口面部裂 [62] [63] 。硒缺乏与心血管疾病密切相关,包括克山病,心肌梗塞和冠心病 [64] ,Ou等人进行的一项病例对照研究表明,与对照组相比,冠心病婴儿在妊娠中期和晚期收集的母体血液硒显著降低 [65] 。

3.8. 铁蛋白与先天性心脏病

Yang等人进行的一项病例对照研究表明,母亲中低水平的铁摄入量,铁补充剂和铁状态与后代冠心病风险相关 [66] ,有一项研究进一步揭示了铁在心脏发育中的重要作用 [67] ,结果表明母体铁缺乏导致胚胎室间隔缺损、房间隔缺损、心室心肌薄的风险增加,铁缺陷胚胎中这些冠心病表型与心流出道旋转不良、心垫异常及主动脉弓异常有关。进一步分析表明,铁缺乏还可导致第二心野和心流出道中视黄酸信号传导升高,致心脏转录因子GATA4异位激活和第二心野心脏祖细胞过早分化。最重要的是,这些冠心病表型可以通过在妊娠中期消除视黄酸信号或膳食补充铁来挽救。相反的,有相关研究表明,过量的补充铁具有潜在的心脏致畸作用。韩旭等人 [68] 发现怀孕前后1个月内补充FA与冠心病呈正相关,高剂量FA摄入与ASD呈正相关。在高剂量或特定时间窗口下,补充FA可能对心脏发育产生负面影响,但FA对心脏发育的确切生物学机制仍有待阐明。

4. 结语

综上所述,先天性心脏病的发病机制较为复杂,其中除了与外周环境因素暴露与营养素摄入不足或缺乏相关之外,同时也存在着复杂的遗传因素,所以围孕期孕妇适量补充叶酸、多种维生素等营养因素对先天性心脏病的预防显得尤为重要,并对胎儿的生长发育具有地基性意义,如今随着现代外周环境不断发生变化,在迎接高科技与崭新未来的同时,不知不觉地很多影响胎儿生长发育中新的危险因素逐渐显露头角,这种现象更应该被警惕和重视。与先天性心脏病相关的更具体潜在机制有待进一步研究。

参考文献

[1] Liu, J.J., Chen, S., Zühlke, L., et al. (2019) Global Birth Prevalence of Congenital Heart Defects 1970-2017: Updated Systematic Review and Meta-Analysis of 260 Studies. International Journal of Epidemiology, 48, 455-463. [Google Scholar] [CrossRef] [PubMed]
[2] 刘迎龙, 苏俊武. 建国70年来我国先天性心脏病诊治回顾与进展[J]. 中国医药, 2019, 14(9): 1281-1284. [Google Scholar] [CrossRef
[3] 摩尔∙佩尔绍德 T., 托尔基亚 M. 心血管系统——发育中的人类[M]//发育中的人类: 临床导向的胚胎学. 第11版. 阿姆斯特丹: 爱思唯尔, 2020: 263-314.
[4] 赵颖. 用DHPLC技术进行单纯性先天性心脏病易感基因SORBS2的突变分析[D]: [硕士学位论文]. 广州: 南方医科大学, 2012.[CrossRef
[5] 孟颖颖. 转录因子家族与先天性心脏病关系的研究进展[J]. 国际儿科学杂志, 2012, 39(2): 128-131. [Google Scholar] [CrossRef
[6] 金艳梅, 刘彩霞. 转录因子TBX20与先天性心脏病发病机制研究进展[J]. 国际儿科学杂志, 2021, 48(5): 302-305. [Google Scholar] [CrossRef
[7] Lim, T.B., Foo, S.Y.R. and Chen, C.K. (2021) The Role of Epigenetics in Congenital Heart Disease. Genes (Basel), 12, 390. [Google Scholar] [CrossRef] [PubMed]
[8] 李晓倩. 双酚A对母胎界面滋养细胞迁移的影响及其机制的研究[D]: [硕士学位论文]. 南京: 南京医科大学, 2016.
[9] 王真. 生长分化因子——8对人绒毛膜滋养层细胞侵袭性的调控作用和机制研究[D]: [硕士学位论文]. 郑州: 郑州大学, 2022.
[10] Fu, H., Tan, W., Chen, Z., Ye, Z., Duan, Y., Huang, J., Qi, H. and Liu, X. (2022) TOP2A Deficit-Induced Abnormal Decidualization Leads to Recurrent Implantation Failure via the NF-κB Signaling Pathway. Reproductive Biology and Endocrinology, 20, Article No. 142. [Google Scholar] [CrossRef] [PubMed]
[11] Ahmed, S., Mahabbate, K.S., Rekha, R.S., et al. (2011) Arse-nic-Associated Oxidative Stress, Inflammation, and Immune Disruption in Human Placenta and Cord Blood. Environ-mental Health Perspectives, 119, 258-264. [Google Scholar] [CrossRef] [PubMed]
[12] Liu, J., Gunewardena, S., Yue, C.J., Klaassen, C.D., Chorley, B.N. and Corton, J.C. (2020) Transplacental Arsenic Exposure Produced 5-Methylcytosine Methylation Changes and Aberrant microRNA Expressions in Livers of Male Fetal Mice. Toxicology, 435, Article ID: 152409. [Google Scholar] [CrossRef] [PubMed]
[13] 徐倩, 陈益钦, 王琪, 姚镜, 王盼琳, 王文祥. 妊娠期砷暴露对F1代成年雄性大鼠睾酮合成和精子质量的影响[J]. 环境与职业医学, 2022, 39(9): 1038-1044. [Google Scholar] [CrossRef
[14] Song, G., Cui, Y., Han, Z.J., et al. (2012) Effects of Choline on Sodi-um Arsenite-Induced Neural Tube Defects in Chick Embryos. Food and Chemical Toxicology, 50, 4364-4374. [Google Scholar] [CrossRef] [PubMed]
[15] 包丽丽, 刘小玲. 心脏疾病中镁离子的临床应用[J]. 内蒙古医学杂志, 2004, 36(12): 1024-1025.
[16] Topol, E. and Lerman, B.B. (1983) Hypomagnesemic Torsade de Pointes. Amer-ican Journal of Cardiology, 52, 1367-1368. [Google Scholar] [CrossRef] [PubMed]
[17] 杨贵荣, 董果雄, 张社华, 等. 镁对缺血再灌注心脏内皮细胞功能和血小板活化的影响[J]. 中国动脉硬化杂志, 2003, 11(5): 426-428.
[18] Payandeh, J., Pfoh, R. and Pai, E.F. (2013) The Structure and Regulation of Magnesium Selective Ion Channels. Biochimica et Biophysica Acta, 1828, 2778-2792. [Google Scholar] [CrossRef] [PubMed]
[19] Henson, M.C. and Chedrese, P.J. (2004) Endocrine Disruption by Cadmium, a Common Environmental Toxicant with Paradoxical Effects on Reproduction. Experimental Biology and Medicine (Maywood), 229, 383-392. [Google Scholar] [CrossRef] [PubMed]
[20] Yu, X., Hong, S. and Faustman, E.M. (2008) Cadmi-um-Induced Activation of Stress Signaling Pathways, Disruption of Ubiquitin-Dependent Protein Degradation and Apoptosis in Primary Rat Sertoli Cell-Gonocyte Cocultures. Toxicological Sciences, 104, 385-396. [Google Scholar] [CrossRef] [PubMed]
[21] Doi, T., Puri, P., McCann, A., et al. (2011) Epigenetic Effect of Cad-mium on Global De Novo DNA Hypomethylation in the Cadmium-Induced Ventral Body Wall Defect (VBWD) in the Chick Model. Toxicological Sciences, 120, 475-480. [Google Scholar] [CrossRef] [PubMed]
[22] Thompson, J., Hipwell, E., Loo, H.V., et al. (2005) Effects of Cadmium on Cell Death and Cell Proliferation in Chick Embryos. Re-productive Toxicology, 20, 539-548. [Google Scholar] [CrossRef] [PubMed]
[23] Hudson, K.M., Belcher, S.M. and Cowley, M. (2019) Maternal Cadmium Exposure in the Mouse Leads to Increased Heart Weight at Birth and Programs Susceptibility to Hypertension in Adulthood. Scientific Reports, 9, Article No. 13553. [Google Scholar] [CrossRef] [PubMed]
[24] Wu, X., Chen, Y., Luz, A., Hu, G. and Tokar, E.J. (2022) Car-diac Development in the Presence of Cadmium: An in Vitro Study Using Human Embryonic Stem Cells and Cardiac Or-ganoids. Environmental Health Perspectives, 130, Article ID: 117002. [Google Scholar] [CrossRef
[25] Budinger, D., Barral, S., Soo, A.K.S. and Kurian, M.A. (2021) The Role of Manganese Dysregulation in Neurological Disease: Emerging Evidence. The Lancet Neurology, 20, 956-968. [Google Scholar] [CrossRef
[26] 邵静君. 锰中毒对鸡心脏损伤机制的研究[D]: [硕士学位论文]. 哈尔滨: 东北农业大学, 2008.
[27] Wang, M., Tian, Y., Yu, P., et al. (2022) Association between Congenital Heart Defects and Maternal Manganese and Iron Concentrations: A Case-Control Study in China. Environmental Science and Pollution Research International, 29, 26950-26959. [Google Scholar] [CrossRef] [PubMed]
[28] Ou, Y.Q., Bloom, M.S., Nie, Z.Q., et al. (2017) Associations between Toxic and Essential Trace Elements in Maternal Blood and Fetal Congenital Heart Defects. Environment International, 106, 127-134. [Google Scholar] [CrossRef] [PubMed]
[29] Salehi, F., Darmiani, K., Nakhaee, S., Zadeh, A.A., Javadmoosa-vi, S.Y., Faghihi, V., et al. (2022) Comparison of Blood Lead Concentrations in Mothers of Children with Congenital Heart Disease and Mothers of Healthy Children. Biological Trace Element Research, 200, 2001-2007. [Google Scholar] [CrossRef] [PubMed]
[30] Liu, Z., Yu, Y., Li, X., Wu, A., Mu, M., Li, N., et al. (2015) Maternal Lead Exposure and Risk of Congenital Heart Defects Occurrence in Offspring. Reproductive Toxicology, 51, 1-6. [Google Scholar] [CrossRef] [PubMed]
[31] 钟龙青. 维生素D与儿童相关疾病研究进展[J]. 实验与检验医学, 2018, 36(1): 1-3.
[32] Brown, J.M. and Vaidya, A. (2014) Interactions between Adrenal-Regulatory and Calcium-Regulatory Hormones in Human Health. Current Opinion in Endocrinology, Diabetes and Obesity, 21, 193-201. [Google Scholar] [CrossRef
[33] Perez-Hernandez, N., Aptilon-Duque, G., Nostro-za-Hernandez, M.C., et al. (2016) Vitamin D and Its Effects on Cardiovascular Diseases: A Comprehensive Review. The Korean Journal of Internal Medicine, 31, 1018-1029. [Google Scholar] [CrossRef] [PubMed]
[34] Banuelos-Chavez, K.V., Cerrillos-Gutierrez, J.I., Nario, J.C., et al. (2017) Diagnosis and Clinical Implications of Vascular Calcification of Chronic Kidney Disease in Mexico. Revista médica del Instituto Mexicano del Seguro Social, 55, S151-S157.
[35] Wang, J., Zhou, J.J., Robertson, G.R., et al. (2018) Vitamin D in Vascular Calcification: A Double-Edged Sword? Nutrients, 10, 652. [Google Scholar] [CrossRef] [PubMed]
[36] Izumi, G., Inai, K., Shimada, E., et al. (2016) Vitamin D Kinetics and Parathyroid Gland Function in Patients with Congenital Heart Disease. Congenital Heart Disease, 11, 700-706. [Google Scholar] [CrossRef] [PubMed]
[37] Green, J.J., Robinson, D.A., Wilson, G.E., et al. (2006) Calcitriol Modula-tion of Cardiac Contractile Performance via Protein Kinase C. Journal of Molecular and Cellular Cardiology, 41, 350-359. [Google Scholar] [CrossRef] [PubMed]
[38] Bansal, B., Bansal, M., Bajpai, P., et al. (2014) Hypocalcemic Cardiomyopathy-Different Mechanisms in Adult and Pediatric Cases. The Journal of Clinical Endocrinology & Metabo-lism, 99, 2627-2632. [Google Scholar] [CrossRef] [PubMed]
[39] Lupo, P.J., Mitchell, L.E. and Jenkins, M.M. (2019) Genome-Wide As-sociation Studies of Structural Birth Defects: A Review and Commentary. Birth Defects Research, 111, 1329-1342. [Google Scholar] [CrossRef] [PubMed]
[40] Oppola, A., Davi, G., De Stefano, V., et al. (2000) Homocysteine, Coagu-lation, Platelet Function, and Thrombosis. Seminars in Thrombosis and Hemostasis, 26, 243-254. [Google Scholar] [CrossRef] [PubMed]
[41] Wilson, R.D. and O’Connor, D.L. (2021) Maternal Folic Acid and Mul-tivitamin Supplementation: International Clinical Evidence with Considerations for the Prevention of Folate-Sensitive Birth Defects. Preventive Medicine Reports, 24, Article ID: 101617. [Google Scholar] [CrossRef] [PubMed]
[42] Green, N.S. (2002) Folic Acid Supplementation and Prevention of Birth Defects. The Journal of Nutrition, 132, 2356S-2360S. [Google Scholar] [CrossRef
[43] Qin, X., Xu, M., Zhang, Y., Li, J., Xu, X., Wang, X., et al. (2012) Effect of Folic Acid Supplementation on the Progression of Carotid Intima-Media Thickness: A Meta-Analysis of Randomized Controlled Trials. Atherosclerosis, 222, 307-313. [Google Scholar] [CrossRef] [PubMed]
[44] Van Beynum, I.M., Kapusta, L., Bakker, M.K., et al. (2010) Protective Effect of Periconceptional Folic Acid Supplements on the Risk of Congenital Heart Defects: A Regis-try-Based Case-Control Study in the Northern Netherlands. European Heart Journal, 31, 464-471. [Google Scholar] [CrossRef] [PubMed]
[45] Mao, B., Qiu, J., Zhao, N., Shao, Y., Dai, W., He, X., et al. (2017) Maternal Folic Acid Supplementation and Dietary Folate Intake and Congenital Heart Defects. PLOS ONE, 12, e0187996. [Google Scholar] [CrossRef] [PubMed]
[46] Tierney, B.J., Ho, T., Reedy, M.V. and Brauer, P.R. (2004) Homocysteine Inhibits Cardiac Neural Crest Cell Formation and Morphogenesis in Vivo. Developmental Dynamics, 229, 63-73. [Google Scholar] [CrossRef] [PubMed]
[47] Son, P. and Lewis, L. (2023) Hyperhomocysteinemia. StatPearls Publishing, Treasure Island.
[48] Kaye, A.D., Jeha, G.M., Pham, A.D., et al. (2020) Folic Acid Supplementation in Pa-tients with Elevated Homocysteine Levels. Advances in Therapy, 37, 4149-4164. [Google Scholar] [CrossRef] [PubMed]
[49] 孙亚楠. 孕妇维生素A水平与胎儿先天性心脏病的相关研究[J]. 中国保健营养, 2018, 28(2): 112-113. [Google Scholar] [CrossRef
[50] 王定美, 黄国英. 围孕期营养因素与先天性心脏病发病的关系[J]. 国际儿科学杂志, 2016, 43(11): 840-843. [Google Scholar] [CrossRef
[51] Nakatani, S., Mori, K., Shoji, T. and Emoto, M. (2021) Association of Zinc Deficiency with Development of CVD Events in Patients with CKD. Nutrients, 13, Article No. 1680. [Google Scholar] [CrossRef] [PubMed]
[52] Lopez, V., Keen, C.L. and Lanoue, L. (2008) Prenatal Zinc Deficiency: Influence on Heart Morphology and Distribution of Key Heart Proteins in a Rat Model. Biological Trace Element Research, 122, 238-255. [Google Scholar] [CrossRef] [PubMed]
[53] Davis, C.D., Uthus, E.O. and Finley, J.W. (2000) Dietary Sele-nium and Arsenic Affect DNA Methylation in Vitro in Caco-2 Cells and in Vivo in Rat Liver and Colon. The Journal of Nutrition, 130, 2903-2909. [Google Scholar] [CrossRef] [PubMed]
[54] Yang, J.M., Kang, Y.J., Chang, Q.Q., et al. (2022) Maternal Zinc, Copper, and Selenium Intakes during Pregnancy and Congenital Heart Defects. Nutrients, 14, Article No. 1055. [Google Scholar] [CrossRef] [PubMed]
[55] Duffy, J.Y., Overmann, G.J., Keen, C.L., Clegg, M.S. and Daston, G.P. (2004) Cardiac Abnormalities Induced by Zinc Deficiency Are Associated with Alterations in the Expression of Genes Regulated by the Zinc-Finger Transcription Factor GATA-4. Birth Defects Research Part B: Developmental and Repro-ductive Toxicology, 71, 102-109. [Google Scholar] [CrossRef] [PubMed]
[56] Beckers-Trapp, M.E., Lanoue, L., Keen, C.L., Rucker, R.B. and Uriu-Adams, J.Y. (2006) Abnormal Development and Increased 3-Nitrotyrosine in Copper-Deficient Mouse Embryos. Free Radical Biology and Medicine, 40, 35-44. [Google Scholar] [CrossRef] [PubMed]
[57] Gambling, L., Kennedy, C. and McArdle, H.J. (2011) Iron and Copper in Fetal Development. Seminars in Cell & Developmental Biology, 22, 637-644. [Google Scholar] [CrossRef] [PubMed]
[58] Clemente, P., Peralta, S., Cruz-Bermudez, A., et al. (2013) hCOA3 Stabilizes Cytochrome c Oxidase 1 (COX1) and Promotes Cytochrome c Oxidase Assembly in Human Mito-chondria. Journal of Biological Chemistry, 288, 8321-8331. [Google Scholar] [CrossRef
[59] Srinivasan, S. and Avadhani, N.G. (2012) Cytochrome c Oxidase Dysfunction in Oxidative Stress. Free Radical Biology and Medicine, 53, 1252-1263. [Google Scholar] [CrossRef] [PubMed]
[60] Sancenón, V., Puig, S., Mateu-Andrés, I., Dorcey, E., Thiele, D.J. and Peñarrubia, L. (2004) The Arabidopsis Copper Transporter COPT1 Functions in Root Elongation and Pollen Development. Journal of Biological Chemistry, 279, 15348-15355. [Google Scholar] [CrossRef
[61] Martín, I., Gibert, M.J., Pintos, C., Noguera, A., Besalduch, A. and Obrador, A. (2004) Oxidative Stress in Mothers Who Have Conceived Fetus with Neural Tube Defects: The Role of Aminothiols and Selenium. Clinical Nutrition, 23, 507-514. [Google Scholar] [CrossRef] [PubMed]
[62] Cengiz, B., Söylemez, F., Oztürk, E. and Cavdar, A.O. (2004) Serum Zinc, Selenium, Copper, and Lead Levels in Women with Second-Trimester Induced Abortion Resulting from Neural Tube Defects: A Preliminary Study. Biological Trace Ele-ment Research, 97, 225-235. [Google Scholar] [CrossRef
[63] Hammouda, S.A., Abd Al-Halim, O.A. and Mohamadin, A.M. (2013) Serum Levels of Some Micronutrients and Congenital Malformations: A Prospective Co-hort Study in Healthy Saudi-Arabian First-Trimester Pregnant Women. International Journal for Vitamin and Nutrition Research, 83, 346-354. [Google Scholar] [CrossRef] [PubMed]
[64] Shimada, B.K., Alfulaij, N. and Seale, L.A. (2021) The Impact of Selenium Deficiency on Cardiovascular Function. International Journal of Molecular Scienc-es, 22, Article No. 10713. [Google Scholar] [CrossRef] [PubMed]
[65] Liu, Q., Mao, B.H., Li, J.H., Wang, W.D., Du, S.H., Liu, Q. and Yi, B. (2023) A Nested Case-Control Study on the Association of Neonatal Cord Blood Selenium, Iron and Copper with Congenital Heart Disease. Chinese Journal of Preventive Medicine, 57, 200-207. (In Chi-nese)
[66] Yang, J., Kang, Y., Cheng, Y., Zeng, L., Shen, Y., Shi, G., et al. (2020) Iron Intake and Iron Status during Pregnancy and Risk of Congenital Heart Defects: A Case-Control Study. International Journal of Cardiology, 301, 74-79. [Google Scholar] [CrossRef] [PubMed]
[67] Kalisch-Smith, J.I., Ved, N., Szumska, D., Munro, J., Troup, M., Harris, S.E., et al. (2021) Maternal Iron Deficiency Perturbs Embryonic Cardiovascular Development in Mice. Nature Communications, 12, Article No. 3447. [Google Scholar] [CrossRef] [PubMed]
[68] Han, X.H., Wang, B.Q., Jin, D.X., et al. (2022) Precise Dose of Folic Acid Supplementation Is Essential for Embryonic Heart Development in Zebrafish. Biology, 11, Article No. 28. [Google Scholar] [CrossRef] [PubMed]