具有年龄结构的SVIQR传染病模型的稳定性分析
Stability Analysis of SVIQR Infectious Disease Model with Age Structure
DOI: 10.12677/PM.2023.139253, PDF, HTML, XML, 下载: 172  浏览: 268  国家自然科学基金支持
作者: 史旭元, 高红亮*:兰州交通大学,数理学院,甘肃 兰州
关键词: 年龄结构疫苗接种隔离基本再生数稳定性Age Structure Vaccination Isolation Basic Regeneration Number Stability
摘要: 讨论一类具有疫苗接种和隔离的年龄结构SVIQR传染病模型,得出基本再生数R0的表达式。证明了当R0 < 1时,无病平衡点全局渐近稳定;当R0 > 1时,无病平衡点不稳定;此时系统存在地方病平衡点,并且证明了地方病平衡点是唯一的并且局部渐进稳定。最终得出,隔离是消除传染病的有效方式,如果不能进一步降低传播率,那么就需要最大限度地提高疫苗接种率。
Abstract: A class of age-structured SVIQR infectious disease models with vaccination and isolatio-n was discussed. The expressions of basic regeneration number R0 were derived. It was proved that when R0 < 1, the disease-free equilibrium point was globally asymptotically stable; when R0 > 1, the dis-ease-free equilibrium point was unstable. And there exists endemic equilibrium state, and it was proved that endemic equilibrium point was unique and locally asymptotically stable. Ultimately, isolation was an effective way to eliminate infectious diseases; if transmission rates cannot be re-duced in future, then vaccination rates need to be maximized.
文章引用:史旭元, 高红亮. 具有年龄结构的SVIQR传染病模型的稳定性分析[J]. 理论数学, 2023, 13(9): 2465-2477. https://doi.org/10.12677/PM.2023.139253

1. 引言

传染病是人类历史上极易造成重大伤亡的疾病,近年来,艾滋病、肺结核、麻疹等疾病从未淡出过人们的视野,这就警示我们,传染病一直存在,我们必须不断提出新的方法来面对新出现或者反复出现的传染病。年龄是研究传染病模型中的重要因素,最早建立和研究年龄结构的流行病模型是Hoppenstendt [1] 。此后,研究年龄结构的流行病模型的工作不断出现,大多数作者讨论的是SIS,SIR,SEIR模型 [2] [3] [4] [5] [6] 。在突发传染病暴发的早期阶段,非药物预防和控制措施往往在遏制疾病传播和暴发方面发挥着关键作用。隔离是发现传染病病人或疑似者,将其安置在一定场所,使之不与易感人群接触的一种措施。隔离是控制传染源的重要措施之一。隔离的方式,应根据疾病的传播途径而定。某些传染病可在家隔离,如麻疹等,有些则应在临时隔离室或住院隔离,许多学者在模型中考虑了隔离措施,从而让模型更加符合实际情况 [7] [8] [9] [10] 。文献 [7] 中提出了一类具有接种和隔离治疗的肺结核模型,研究了模型的全局稳定性。文献 [8] 中研究了易感人群软隔离行为对COVID-19在武汉的传播影响。文献 [9] 中研究了由确诊病例驱动跟踪隔离的时滞传染病数学模型。文献 [10] 中研究了具有隔离和不完全治疗的传染病模型的全局稳定性。受以上文章启发,加入了年龄结构,研究了具有疫苗接种和隔离的年龄结构SVIQR传染病模型,相比传统的模型,更加具有实际意义。

2. 模型建立

本文将所研究的人群分为五类,分别为易感者类、疫苗接种类、染病者类、隔离者类和康复者类,并用 S ( a , t ) , V ( a , t ) , I ( a , t ) , Q ( a , t ) , R ( a , t ) 表示在t时年龄a易感者类、疫苗接种者类、染病者类、隔离者类和康复者类的年龄分布函数。种群的全体成员的年龄分布函数为 N ( a , t ) ,即 N ( a , t ) = S ( a , t ) + V ( a , t ) + I ( a , t ) + Q ( a , t ) + R ( a , t ) ,根据传染病建模方法,建立如下具有年龄结构的传染病模型,

{ S a + S t = S ( a , t ) 0 a + β ( a , a ) I ( a , t ) N ( a , t ) d a μ ( a ) S ( a , t ) δ ( a ) S ( a , t ) , V a + V t = δ ( a ) S ( a , t ) [ μ ( a ) + m ] V ( a , t ) , I a + I t = S ( a , t ) 0 a + β ( a , a ) I ( a , t ) N ( a , t ) d a [ μ ( a ) + ρ ( a ) + σ ( a ) ] I ( a , t ) , Q a + Q t = ρ ( a ) I ( a , t ) [ μ ( a ) + γ ( a ) ] Q ( a , t ) , R a + R t = γ ( a ) Q ( a , t ) + m V ( a , t ) + σ ( a ) I ( a , t ) μ ( a ) R ( a , t ) , (1)

初值条件

S ( a , 0 ) = S 0 ( a ) , V ( a , 0 ) = V 0 ( a ) , I ( a , 0 ) = I 0 ( a ) , Q ( a , 0 ) = Q 0 ( a ) , R ( a , 0 ) = R 0 ( a )

边界条件

S ( 0 , t ) = A , V ( 0 , t ) = 0 , I ( 0 , t ) = 0 , Q ( 0 , t ) = 0 , R ( 0 , t ) = 0.

各参数表示的意义如下表1

Table 1. Each parameter and its significance

表1. 各参数及意义

基本假设

1) 具有一定的初始人口;

2) 不考虑因病死亡;

3) 接种疫苗之后不在染病。

为了简化系统(1),对系统(1)进行归一变换,令

s ( a , t ) = S ( a , t ) N ( a , t ) , v ( a , t ) = V ( a , t ) N ( a , t ) , i ( a , t ) = I ( a , t ) N ( a , t ) , q ( a , t ) = Q ( a , t ) N ( a , t ) , r ( a , t ) = R ( a , t ) N ( a , t ) .

则系统(1)变为如下形式

{ s a + s t = [ λ ( a , t ) + δ ( a ) ] s ( a , t ) , v a + v t = δ ( a ) s ( a , t ) m v ( a , t ) , i a + i t = λ ( a , t ) s ( a , t ) [ ρ ( a ) + σ ( a ) ] i ( a , t ) , q a + q t = ρ ( a ) i ( a , t ) γ ( a ) q ( a , t ) , r a + r t = γ ( a ) q ( a , t ) + m v ( a , t ) + σ ( a ) i ( a , t ) , (2)

初始条件

s ( a , 0 ) = S 0 ( a ) N 0 ( a ) = s 0 ( a ) , v ( a , 0 ) = V 0 ( a ) N 0 ( a ) = v 0 ( a ) , i ( a , 0 ) = I 0 ( a ) N 0 ( a ) = i 0 ( a ) , q ( a , 0 ) = Q 0 ( a ) N 0 ( a ) = q 0 ( a ) , r ( a , 0 ) = R 0 ( a ) N 0 ( a ) = r 0 ( a ) ,

边界条件

s ( 0 , t ) = 1 , v ( 0 , t ) = 0 , i ( 0 , t ) = 0 , q ( 0 , t ) = 0 , r ( 0 , t ) = 0 ,

其中

λ ( a , t ) = k ( a ) 0 a + β ˜ ( a ) i ( a , t ) d a .

可以获得

s ( a , t ) + v ( a , t ) + i ( a , t ) + q ( a , t ) + r ( a , t ) = 1.

3. 无病平衡点的存在性和稳定性

3.1. 无病平衡点的存在性

当系统(2)达到稳定的年龄分布时, s , v , i , q , r 只与年龄a有关,所以系统变为如下形式

{ d s d a = [ λ ( a ) + δ ( a ) ] s ( a ) , d v d a = δ ( a ) s ( a ) m v ( a ) , d i d a = λ ( a ) s ( a ) [ ρ ( a ) + σ ( a ) ] i ( a ) , d q d a = ρ ( a ) i ( a ) γ ( a ) q ( a ) , d r d a = γ ( a ) q ( a ) + m v ( a ) + σ ( a ) i ( a ) , (3)

初始条件

s ( 0 ) = 1 , v ( 0 ) = 0 , i ( 0 ) = 0 , q ( 0 ) = 0 , r ( 0 ) = 0 ,

其中

λ ( a ) = k ( a ) 0 a + β ˜ ( a ) i ( a ) d a .

r在上面4个方程均为出现,所以只考虑前4个方程,得到其无病平衡点

E 0 = ( s 0 ( a ) , v 0 ( a ) , i 0 ( a ) , q 0 ( a ) ) .

显然, i 0 ( a ) = q 0 ( a ) = 0 ,

s 0 ( a ) = e 0 a δ ( s ) d s , v 0 ( a ) = 0 a δ ( τ ) e 0 a δ ( ξ ) d ξ e τ a m d s d τ .

综上,我们可知无病平衡点存在且唯一,即 E 0 = ( s 0 ( a ) , v 0 ( a ) , 0 , 0 )

3.2. 无病平衡点的局部稳定性

为了研究无病平衡点的局部稳定性,我们对系统(3)进行平移变换,令

s ( a , t ) = s 0 ( a ) + s ¯ ( a , t ) , v ( a , t ) = v 0 ( a ) + v ¯ ( a , t ) , i ( a , t ) = i 0 ( a ) + i ¯ ( a , t ) , q ( a , t ) = q 0 ( a ) + q ¯ ( a , t ) .

则系统变为如下形式

{ s ¯ a + s ¯ t = λ ¯ ( a , t ) s ¯ ( a , t ) δ ( a ) s ¯ ( a , t ) λ ¯ ( a , t ) s 0 ( a ) , v ¯ a + v ¯ t = δ ( a ) s ¯ ( a , t ) + δ ( a ) s 0 ( a ) m v ¯ ( a , t ) m v 0 ( a ) , i ¯ a + i ¯ t = λ ¯ ( a , t ) s ¯ ( a , t ) + λ ¯ ( a , t ) s 0 ( a ) [ ρ ( a ) + σ ( a ) ] i ¯ ( a , t ) , q ¯ a + q ¯ t = ρ ( a ) i ¯ ( a , t ) γ ( a ) q ¯ ( a , t ) , (4)

边界条件

s ¯ ( 0 , t ) = 0 , v ¯ ( 0 , t ) = 0 , i ¯ ( 0 , t ) = 0 , q ¯ ( 0 , t ) = 0 ,

其中

λ ¯ ( a , t ) = k ( a ) 0 a + β ˜ ( a ) i ¯ ( a , t ) d a .

系统(4)线性部分如下

{ s ¯ a + s ¯ t = δ ( a ) s ¯ ( a , t ) λ ¯ ( a , t ) s 0 ( a ) , v ¯ a + v ¯ t = δ ( a ) s ¯ ( a , t ) m v ¯ ( a , t ) , i ¯ a + i ¯ t = λ ¯ ( a , t ) s 0 ( a ) [ ρ ( a ) + σ ( a ) ] i ¯ ( a , t ) , q ¯ a + q ¯ t = ρ ( a ) i ¯ ( a , t ) γ ( a ) q ¯ ( a , t ) , (5)

边界条件 s ¯ ( 0 , t ) = 0 , v ¯ ( 0 , t ) = 0 , i ¯ ( 0 , t ) = 0 , q ¯ ( 0 , t ) = 0.

考虑系统(5)的指数解形式,令

s ¯ ( a , t ) = s ¯ ( a ) e λ t , v ¯ ( a , t ) = v ¯ ( a ) e λ t , i ¯ ( a , t ) = i ¯ ( a ) e λ t , q ¯ ( a , t ) = q ¯ ( a ) e λ t .

则系统(5)变为如下形式

{ d s ¯ d a = λ ^ ( a ) s 0 ( a ) [ δ ( a ) + λ ] s ¯ ( a ) , d v ¯ d a = δ ( a ) s ¯ ( a ) [ λ + m ] v ¯ ( a ) , d i ¯ d a = λ ^ ( a ) s 0 ( a ) [ λ + ρ ( a ) + σ ( a ) ] i ¯ ( a ) , d q ¯ d a = ρ ( a ) i ¯ ( a ) γ ( a ) q ¯ ( a ) , (6)

初始条件 s ¯ ( 0 ) = 0 , e ¯ ( 0 ) = 0 , i ¯ ( 0 ) = 0 , q ¯ ( 0 ) = 0 ,

其中

λ ^ ( a ) = k ( a ) 0 a + β ˜ ( a ) i ¯ ( a ) d a .

解系统(6)可以得

{ s ¯ ( a ) = 0 a λ ^ ( τ ) s 0 ( τ ) e τ a [ λ + δ ( s ) ] d s d τ , v ¯ ( a ) = 0 a [ δ ( τ ) s ¯ ( τ ) ] e τ a ( λ + m ) d s d τ , i ¯ ( a ) = 0 a λ ^ ( τ ) s 0 ( τ ) e τ a [ λ + ρ ( s ) + σ ( s ) ] d s d τ , v ¯ ( a ) = 0 a [ ρ ( τ ) i ¯ ( τ ) ] e τ a γ ( s ) d s d τ . (7)

Λ = 0 a + β ˜ ( a ) i ¯ ( a ) d a ,有 λ ^ ( a ) = Λ k ( a )

i ¯ ( a ) 的表达式代入,可以获得

Λ = 0 a + β ˜ ( a ) 0 a Λ k ( τ ) s 0 ( τ ) e τ a [ λ + ρ ( s ) + σ ( s ) ] d s d τ d a .

产生以下关于 λ 的特征方程

1 = 0 a + β ˜ ( a ) 0 a k ( τ ) s 0 ( τ ) e τ a [ λ + ρ ( s ) + σ ( s ) ] d s d τ d a .

利用 F ( λ ) 来表示右侧

F ( λ ) = 0 a + β ˜ ( a ) 0 a k ( τ ) s 0 ( τ ) e τ a [ λ + ρ ( s ) + σ ( s ) ] d s d τ d a .

基本再生数指的是一个病人在平均患病期内所传染的人数,是考量病毒能否流行的指标性因素,可以将基本再生数定义为 R 0 = F ( 0 ) ,即

R 0 = 0 a + β ˜ ( a ) 0 a k ( τ ) s 0 ( τ ) e τ a [ ρ ( s ) + σ ( s ) ] d s d τ d a . (8)

对于无病平衡点 E 0 的局部稳定性,我们有以下结果。

定理1 如果 R 0 < 1 E 0 是局部稳定的。如果 R 0 > 1 E 0 是不稳定的。

证明 从 F ( λ ) 的表达式中,可以得到以下的性质

F ( λ ) < 0 , lim λ F ( λ ) = + , lim λ + F ( λ ) = 0.

则存在唯一的实根 λ * ,使得 F ( λ * ) = 1

Figure 1. The approximate graph of F ( λ )

图1. F ( λ ) 的近似图

情况一 F ( λ ) = 1 有一个实根。如果 R 0 < 1 ,即 F ( 0 ) < 1 ,则 λ * < 0 。因此,如果 R 0 < 1 F ( λ * ) = 1 有唯一的负实根。

情况二 F ( λ ) = 1 有一个复根。令 λ = α + β i 是满足 F ( λ ) = 1 的根。则 Re F ( λ ) = 1 Im F ( λ ) = 0 ,并且

Re ( e λ ) = Re ( e α + β i ) = Re [ e α ( cos β + i sin β ) ] = e α cos β e α = e Re λ ,

F ( λ ) = 0 a + β ˜ ( a ) 0 a k ( τ ) s 0 ( τ ) e τ a [ λ + ρ ( s ) + σ ( s ) ] d s d τ d a 0 a + β ˜ ( a ) 0 a k ( τ ) s 0 ( τ ) e [ Re λ ( a τ ) ] e τ a [ ρ ( s ) + σ ( s ) ] d s d τ d a = F ( Re λ ) .

所以,可以获得

1 F ( Re λ ) F ( λ * ) F ( Re λ ) Re λ λ * < 0.

F ( λ ) 的近似图如图1所示,因此,若 F ( λ * ) = 1 有一个复根,则复根必须要有负实部。从以上可知,当 R 0 < 1 时, F ( λ * ) = 1 总有负实部,即 E 0 是局部稳定的。反之,当 R 0 > 1 时, E 0 是不稳定的。

3.3. 无病平衡点的全局稳定性

在本节中讨论了当 R 0 < 1 时无病稳态 E 0 的全局稳定性,并得到如下结果。

定理2 如果 R 0 < 1 ,则无病平衡点 E 0 是全局渐近稳定的。

证明 只需要证明当 t 时,下列极限成立

{ lim t s ( a , t ) = s 0 ( a ) = e 0 a δ ( τ ) d τ , lim t v ( a , t ) = v 0 ( a ) = 0 a δ ( τ ) s ( τ ) e τ a m d s d τ , lim t i ( a , t ) = i 0 ( a ) = 0 , lim t q ( a , t ) = q 0 ( a ) = 0. (9)

利用特征线法求解 s ( a , t ) , v ( a , t ) , i ( a , t ) , q ( a , t ) 。因为我们想研究 t 时的解,所以只考虑当 t > a 时的解。可以得到

{ s ( a , t ) = e 0 a [ λ ( τ + t a , τ ) + δ ( τ ) ] d τ , v ( a , t ) = 0 a δ ( τ ) s ( τ + t a , τ ) e τ a m d s d τ , i ( a , t ) = 0 a λ ( τ + t a ) s ( τ + t a , τ ) e τ a [ ρ ( s ) + σ ( s ) ] d s d τ , q ( a , t ) = 0 a ρ ( τ ) i ( τ + t a , τ ) e τ a γ ( s ) d s d τ . (10)

t > a 时,将 s ( a , t ) 的表达式代入 i ( a , t ) ,可以获得

i ( a , t ) = 0 a λ ( τ + t a ) s ( τ + t a , τ ) e τ a [ ρ ( s ) + σ ( s ) ] d s d τ

χ ( t ) = 0 a + β ˜ ( a ) i ( t , a ) d a ,则 λ ( a , t ) 可以表示为

λ ( a , t ) = k ( a ) χ ( t )

i ( a , t ) 代入 χ ( t ) 中,可以获得

χ ( t ) = 0 a + β ˜ ( a ) 0 a λ ( τ + t a ) s ( τ + t a , τ ) e τ a [ ρ ( s ) + σ ( s ) ] d s d τ d a = 0 t β ˜ ( a ) 0 a λ ( τ + t a ) s ( τ + t a , τ ) e τ a [ ρ ( s ) + σ ( s ) ] d s d τ d a + t a + β ˜ ( a ) i ( t , a ) d a .

显然,当t很大时,上面最后一项为零。

此外,由于 λ ( a , t ) > 0 ,所以

s ( τ + t a , τ ) = e 0 a [ λ ( τ + t a , τ ) + δ ( τ ) ] d τ e 0 a δ ( τ ) d τ = s 0 ( τ )

因此

χ ( t ) = 0 a + β ˜ ( a ) 0 a k ( τ ) χ ( τ + t a ) s ( τ + t a , τ ) e τ a [ ρ ( s ) + σ ( s ) ] d s d τ d a 0 a + β ˜ ( a ) 0 a e τ a [ ρ ( s ) + σ ( s ) ] d s s 0 ( τ ) k ( τ ) χ ( τ + t a ) d τ d a .

又因为

R 0 = 0 a + β ˜ ( a ) 0 a e τ a [ ρ ( s ) + σ ( s ) ] d s k ( τ ) s 0 ( τ ) d τ d a ,

χ ( t ) 两边取极限可得

lim t sup χ ( t ) R 0 lim t sup χ ( t )

R 0 < 1

lim t sup χ ( t ) = 0

因为 χ ( t ) 0 , χ ( t ) = 0 a + β ˜ ( a ) i ( t , a ) d a ,可以获得

lim t sup i ( a , t ) = 0 = i 0 ( a ) , lim t sup q ( a , t ) = 0 = q 0 ( a ) .

s ( t , a ) 的表达式代入得

lim t sup s ( t , a ) = lim t sup e 0 a [ λ ( τ + t a , τ ) + δ ( τ ) ] d τ = lim t sup e 0 a [ k ( ξ ) χ ( ξ + t a ) + δ ( ξ ) ] d ξ = e 0 a δ ( ξ ) d ξ = s o ( a ) ,

同理 lim t sup v ( t , a ) = v 0 ( a )

R 0 < 1 ,则无病平衡点 E 0 是全局渐近稳定的。

4. 地方病平衡点的存在性和稳定性

4.1. 地方病平衡点的存在性

定理3 如果 R 0 > 1 ,则系统存在唯一的地方病平衡点 E * = ( s * ( a ) , v * ( a ) , i * ( a ) , q * ( a ) )

证明 当系统达到稳定的年龄分布时,系统只与年龄有关,则系统的稳态解满足如下形式

{ d s * d a = [ λ * ( a ) + δ ( a ) ] s * ( a ) , d v * d a = δ ( a ) s * ( a ) m v * ( a ) , d i * d a = λ * ( a ) s * ( a ) [ ρ ( a ) + σ ( a ) ] i * ( a ) , d q * d a = ρ ( a ) i * ( a ) γ ( a ) q * ( a ) , (11)

初始条件 s * ( 0 ) = 1 , v * ( 0 ) = 0 , i * ( 0 ) = 0 , q * ( 0 ) = 0 , 其中 λ * ( a ) = k ( a ) 0 a + β ˜ ( a ) i * ( a ) d a = k ( a ) Λ * , Λ * = 0 a + β ˜ ( a ) i * ( a ) d a

系统的解为

{ s * ( a ) = e 0 a λ ( τ ) + δ ( τ ) d τ , v * ( a ) = 0 a δ ( τ ) s * ( τ ) e τ a m d s d τ , i * ( a ) = Λ * 0 a k ( τ ) e 0 a [ k ( τ ) Λ * + δ ( τ ) ] d τ e τ a [ ρ ( s ) + σ ( s ) ] d s d τ , q * ( a ) = 0 a ρ ( τ ) i * ( τ ) e τ a γ ( s ) d s d τ . (12)

由此可见,当 Λ * = 0 时,地方病平衡点 E * = ( s * ( a ) , v * ( a ) , i * ( a ) , q * ( a ) ) 转变为无病平衡点 E 0 = ( s 0 ( a ) , v 0 ( a ) , i 0 ( a ) , q 0 ( a ) )

i * ( a ) 的表达式代入 Λ * = 0 a + β ˜ ( a ) i * ( a ) d a ,又因为 Λ * 0 ,可得

1 = 0 a k ( τ ) e 0 a [ k ( τ ) Λ * + δ ( τ ) ] d τ e τ a [ ρ ( s ) + σ ( s ) ] d s d τ .

H ( Λ * ) 来表示右侧

H ( Λ * ) = 0 a k ( τ ) e 0 a [ k ( τ ) Λ * + δ ( τ ) ] d τ e τ a [ ρ ( s ) + σ ( s ) ] d s d τ .

Figure 2. The approximate graph of H ( Λ * )

图2. H ( Λ * ) 的近似图

H ( Λ * ) 的表达式中,可以得到以下的性质

H ( Λ * ) < 0 , lim Λ * H ( Λ * ) = + , H ( 0 ) = 0 ,

lim Λ * + H ( Λ * ) = lim Λ * + 1 Λ * 0 a + β ˜ ( a ) i * ( a ) d a lim Λ * + 1 Λ * 0 a + β ˜ ( a ) d a = 0

关于 H ( Λ * ) 的近似图如图2所示,由此表明,当 R 0 > 1 时, H ( Λ * ) = 1 有唯一的正实根 Λ ~ * 。则系统具有唯一的正地方性平衡点 E * = ( s * ( a ) , v * ( a ) , i * ( a ) , q * ( a ) )

4.2. 地方病平衡点的局部稳定性

为了分析 R 0 > 1 时,地方病平衡点的局部稳定性,还需要讨论在 E * 处的线性化系统,令

s ( a , t ) = s * ( a ) + s ˜ ( a , t ) , v ( a , t ) = v * ( a ) + v ˜ ( a , t ) , i ( a , t ) = i * ( a ) + i ˜ ( a , t ) , q ( a , t ) = q * ( a ) + q ˜ ( a , t ) .

取其线性部分,系统变为如下形式

{ s ˜ a + s ˜ t = λ * ( a ) s ˜ ( a , t ) δ ( a ) s ˜ ( a , t ) λ ˜ ( a , t ) s * ( a ) , v ˜ a + v ˜ t = δ ( a ) s ˜ ( a , t ) m v ˜ ( a , t ) , i ˜ a + i ˜ t = λ * ( a ) s ˜ ( a , t ) + λ ˜ ( a , t ) s * ( a ) [ ρ ( a ) + σ ( a ) ] i ˜ ( a , t ) , q ˜ a + q ˜ t = ρ ( a ) i ˜ ( a , t ) γ ( a ) q ˜ ( a , t ) , (13)

边界条件

s ˜ ( 0 , t ) = 0 , v ˜ ( 0 , t ) = 0 , i ˜ ( 0 , t ) = 0 , q ˜ ( 0 , t ) = 0 ,

其中

λ ˜ ( a , t ) = k ( a ) 0 a + β ˜ ( a ) i ˜ ( a , t ) d a , λ * ( a ) = k ( a ) Λ ~ * , Λ ~ * = 0 a + β ˜ ( a ) i * ( a ) d a

现在考虑系统的非零指数解,令

s ˜ ( a , t ) = s ˜ ( a ) e ω t , v ˜ ( a , t ) = v ˜ ( a ) e ω t , i ˜ ( a , t ) = i ˜ ( a ) e ω t , q ˜ ( a , t ) = q ˜ ( a ) e ω t .

则系统变为如下形式

{ d s ˜ d a = ω s ˜ ( a ) Λ ~ * k ( a ) s ˜ ( a ) δ ( a ) s ˜ ( a ) Λ ˜ k ( a ) s * ( a ) , d v ˜ d a = ω v ˜ ( a ) + δ ( a ) s ˜ ( a ) m v ˜ ( a ) , d i ˜ d a = ω i ˜ ( a ) [ ρ ( a ) + σ ( a ) ] i ˜ ( a ) + Λ ~ * k ( a ) s ˜ ( a ) + Λ ˜ k ( a ) s * ( a ) , d q ˜ d a = ω q ˜ ( a ) + ρ ( a ) i ˜ ( a ) γ ( a ) q ˜ ( a ) , (14)

初始条件

s ˜ ( 0 ) = 0 , v ˜ ( 0 ) = 0 , i ˜ ( 0 ) = 0 , q ˜ ( 0 ) = 0 ,

其中

Λ ˜ = 0 a + β ˜ ( a ) i ˜ ( a ) d a .

因为 Λ ˜ 0 ,令 s ^ = s ˜ Λ ˜ , v ^ = v ˜ Λ ˜ , i ^ = i ˜ Λ ˜ , q ^ = q ˜ Λ ˜ 。这个系统变为

{ d s ^ d a = ω s ^ ( a ) Λ ~ * k ( a ) s ^ ( a ) δ ( a ) s ^ ( a ) k ( a ) s * ( a ) , d v ^ d a = ω v ^ ( a ) + δ ( a ) s ^ ( a ) m v ^ ( a ) , d i ^ d a = ω i ^ ( a ) [ ρ ( a ) + σ ( a ) ] i ^ ( a ) + Λ ~ * k ( a ) s ^ ( a ) + k ( a ) s * ( a ) , d q ^ d a = ω q ^ ( a ) + ρ ( a ) i ^ ( a ) γ ( a ) q ^ ( a ) , (15)

其中

1 = 0 a + β ˜ ( a ) i ^ ( a ) d a .

系统(15)的解为

{ s ^ ( a ) = 0 a e η a [ ω + k ( s ) Λ ~ * + δ ( s ) ] d s s * ( η ) k ( η ) d η , v ^ ( a ) = 0 a e η a ( ω + m ) d s [ δ ( η ) s ^ ( η ) ] d η , i ^ ( a ) = 0 a e η a [ ω + ρ ( s ) + σ ( s ) ] d s [ Λ ~ * k ( η ) s ^ ( η ) + k ( η ) s * ( η ) ] d η , q ^ ( a ) = 0 a e η a [ ω + γ ( s ) ] d s ρ ( η ) i ^ ( η ) d η . (16)

φ ( ω ) = 0 a + β ˜ ( a ) i ^ ( a ) d a ,当 R 0 > 1 时,我们想要证明 φ ( ω ) = 1 具有负实部。

φ ( ω ) = 0 a + β ˜ ( a ) 0 a e η a ( ω + ρ ( s ) + σ ( s ) ) d s ( Λ ~ * k ( η ) s ^ ( η ) + k ( η ) s * ( η ) ) d η d a = 0 a + β ˜ ( a ) 0 a e η a ( ω + ρ ( s ) + σ ( s ) ) d s [ Λ ˜ k ( η ) s * ( η ) Λ ~ * k ( η ) 0 η e ξ η ( ω + k ( s ) Λ ~ * + δ ( s ) ) d s s * ( ξ ) k ( ξ ) d ξ ] d η d a ,

并且

φ ( 0 ) = 0 a + β ˜ ( a ) 0 a e η a [ ρ ( s ) + σ ( s ) ] d s ( Λ ~ * k ( η ) s ^ ( η ) + k ( η ) s * ( η ) ) d η d a = 0 a + β ˜ ( a ) 0 a e η a [ ρ ( s ) + σ ( s ) ] d s [ k ( η ) s * ( η ) Λ ~ * k ( η ) 0 η e ξ η ( k ( s ) Λ ~ * + δ ( s ) ) d s s * ( ξ ) k ( ξ ) d ξ ] d η d a .

根据 H ( Λ ~ * ) 的表达式

H ( Λ ~ * ) = 0 a + β ˜ ( a ) 0 a s * ( η ) k ( η ) e η a [ ρ ( s ) + σ ( s ) ] d s d η d a = 1.

这个 φ ( 0 ) 可以转变为

φ ( 0 ) = 1 0 a + β ˜ ( a ) 0 a e η a [ ρ ( s ) + σ ( s ) ] d s Λ ~ * k ( η ) 0 η e ξ η ( k ( s ) Λ ~ * + δ ( s ) ) d s s * ( ξ ) k ( ξ ) d ξ d η d a < 1.

Figure 3. The approximate graph of φ ( ω )

图3. φ ( ω ) 的近似图

由于 Λ ~ * > 0 ,所以

φ ( ω ) < 0 a + β ˜ ( a ) 0 a s * ( η ) k ( η ) e η a [ ω + ρ ( s ) + σ ( s ) ] d s d η d a ψ ( ω ) .

关于 φ ( ω ) 的近似图如图3所示。由于 ψ ( ω ) 是单调递减的,因此对于所有 Re ω > 0 ,有 φ ( ω ) < ψ ( 0 ) = H ( Λ ~ * ) = 1 ,所以 φ ( ω ) = 1 只发生在 Re ω < 0 的区域。因此,如果 R 0 > 1 ,则 φ ( ω ) = 1 的所有根都有负实部。

定理4 如果 R 0 > 1 ,则地方性平衡点 E * = ( s * ( a ) , v * ( a ) , i * ( a ) , q * ( a ) ) 局部渐近稳定。

证明 证明和上述定理1证明类似。

5. 总结

本文在文献 [5] 的基础上对原有模型进行改进,考虑了隔离类,并将疫苗接种者列为单独一类进行讨论,建立了一类具有接种和隔离的年龄结构SVIQR传染病模型。分析计算得到模型的基本再生数

R 0 = 0 a + β ˜ ( a ) 0 a k ( τ ) s 0 ( τ ) e τ a [ ρ ( s ) + σ ( s ) ] d s d τ d a 。证明了当 R 0 < 1 时,无病平衡点 E 0 全局渐近稳定;当 R 0 > 1 时,

无病平衡点 E 0 不稳定,此时系统存在地方病平衡点 E * ,证明了当 R 0 > 1 时,地方病平衡点 E * 是局部渐进稳定。从基本再生数的表达式可以看出,隔离率 ρ ( a ) 或疫苗接种率 δ ( a ) 增大,则基本再生数 R 0 减小,即隔离和提高疫苗接种率是消除传染病的有效方式。

基金项目

国家自然科学基金(11961039);甘肃省高等学校青年博士项目(2022QB-056)。

NOTES

*通讯作者。

参考文献

[1] Hoppenstendt, F. (1994) An Age-Structured Epidemic Model. Journal of the Franklin Institute, 197, 325-333.
https://doi.org/10.1016/0016-0032(74)90037-4
[2] Busenberg, S.N., Iannelli, M. and Thieme, H.R. (1991) Global Behavior of an Age-Structured Epidemic Model. SIAM Journal on Mathematical Analysis, 22, 1065-1080.
https://doi.org/10.1137/0522069
[3] El-Doma, M. (1999) Analysis of an Age-Dependent SIS Epidemic Model with Vertical Transmission and Proportionate Mixing Assumption. Mathematical and Computer Modelling, 29, 31-43.
https://doi.org/10.1016/S0895-7177(99)00060-6
[4] Li, X.Z., et al. (2001) Threshold and Stability Results for an Age-Structured SEIR Epidemic Model. Computers and Mathematics with Applications, 42, 883-907.
https://doi.org/10.1016/S0898-1221(01)00206-1
[5] Huang, J.C., Kang, H., Lu, M., Ruan, S.G. and Zhuo, W.T. (2022) Stability Analysis of an Age Structured Epidemic Model wit-h Vaccination and Standard Incidence Rate. Non-linear Analysis: Real World Applications, 66, Article ID: 103525.
https://doi.org/10.1016/j.nonrwa.2022.103525
[6] 徐文达, 许李灿, 于非凡, 刘素莉. SEI1I2QR传染病模型的动力学分析与应用[J]. 吉林大学学报(理学版), 2023, 61(3): 443-448.
[7] 霍海峰, 邹明轩. 一类具有接种和隔离治疗的结核病模型的稳定性[J]. 兰州理工大学学报, 2016, 42(3): 150-154.
[8] 张菊平, 李云, 姚美萍, 张娟, 朱怀平, 靳祯. 武汉市COVID-19疫情与易感人群软隔离强度关系分析[J]. 应用数学学报, 2020, 43(2): 162-173.
[9] 李倩, 肖燕妮, 吴建宏, 唐三一. COVID-19疫情时滞模型构建与确诊病例驱动的追踪隔离措施分析[J]. 应用数学学报, 2020, 43(2): 238-250.
[10] 丰利香, 王德芬. 具有隔离和不完全治疗的传染病模型的全局稳定性[J]. 数学物理学报, 2021, 41(4): 1235-1248.