#### 期刊菜单

On the Causes of Oumuamua’s Abnormal Acceleration and Orbit Deviation: Solar Repulsion
DOI: 10.12677/AAS.2023.111001, PDF, HTML, XML, 下载: 348  浏览: 712

Abstract: This paper applies the theory of deflection gravity (the gravitational line is deflecting the object’s motion direction) to analyze the trajectory of Oumuamua, and shows that Oumuamua’s abnormal acceleration and orbital deflection are due to the angle between Oumuamua’s motion direction and the gravitational line exceeding 90˚ normal situation thereafter. When the angle between the running direction of Oumuamua and the sun’s gravitational line exceeds 90˚, Oumuamua running be-tween the solar gravitational lines will be affected by the sun’s front and back gravitational lines, forming a displacement (repulsion) away from the sun. Due to the existence of this displacement, Oumuamua’s trajectory will accelerate and deviate from the standard hyperbolic orbit; in terms of speed, Oumuamua is still accelerating significantly after perihelion.

1. 引言

Figure 1. Oumuamua’s orbit

2. 偏转引力理论简述(引力线在偏转物体运动方向)

Figure 2. Analysis of objects running between gravitational lines

${N}_{o}={k}_{\text{1}}{n}_{g}\frac{{m}_{1}}{{m}_{0}}$ (1)

${N}_{R}={k}_{1}{n}_{g}\frac{{m}_{1}}{{m}_{0}}\frac{\pi {\left(\frac{\text{1}}{\text{2}}\Delta \theta R\right)}^{2}}{\text{4}\pi {R}^{2}}={k}_{1}{n}_{g}\frac{{m}_{1}}{{m}_{0}}\frac{{\Delta }^{2}\theta }{\text{1}6}$ (2)

${N}_{R\text{2}}={k}_{1}{k}_{2}{k}_{R}{n}_{g}^{2}\frac{{m}_{1}}{{m}_{0}}\frac{{m}_{2}}{{m}_{0}}\frac{{\Delta }^{2}\theta }{16}{\Delta }^{2}t$ (3)

${L}^{2}=\frac{{k}_{1}{k}_{2}{k}_{R}{n}_{g}^{2}\frac{{m}_{1}}{{m}_{0}}\frac{{m}_{2}}{{m}_{0}}\frac{{\Delta }^{2}\theta }{16}{\Delta }^{2}th}{{m}_{\text{2}}}$ (4)

$b=\sqrt{\frac{{k}_{1}{k}_{2}{k}_{R}{n}_{g}^{2}\frac{{m}_{1}}{{m}_{0}}\frac{{m}_{2}}{{m}_{0}}\frac{{\Delta }^{2}\theta }{16}h}{{m}_{\text{2}}}}=\frac{{n}_{g}\Delta \theta }{\text{4}{m}_{0}}\sqrt{{k}_{1}{k}_{2}{k}_{R}{m}_{1}h}$ (5)

$L=b\Delta t=\frac{b\Delta R}{v}$ (6)

$\delta ={\beta }_{0}+\Delta \theta$ (7)

${R}_{\text{0}}\mathrm{sin}\Delta \theta =\Delta R\mathrm{sin}\left({\beta }_{0}+\Delta \theta \right)$ (8)

$\Delta R=\frac{{R}_{0}\mathrm{sin}\Delta \theta }{\mathrm{sin}\left({\beta }_{0}+\Delta \theta \right)}$ (9)

${R}_{\text{0}}\mathrm{sin}{\beta }_{\text{0}}={R}_{\text{01}}\mathrm{sin}\left({\beta }_{0}+\Delta \theta \right)$ (10)

${R}_{\text{01}}=\frac{{R}_{0}\mathrm{sin}{\beta }_{\text{0}}}{\mathrm{sin}\left({\beta }_{0}+\Delta \theta \right)}$ (11)

${L}_{0//}=\frac{b\Delta R}{{v}_{\text{0}}}\mathrm{sin}{\beta }_{0}$ (12)

${L}_{0\perp }=\frac{b\Delta R}{{v}_{\text{0}}}\mathrm{cos}{\beta }_{0}$ (13)

${L}_{1//}=\frac{b\Delta R}{{v}_{\text{1}}}\mathrm{sin}\left({\beta }_{0}+\Delta \theta \right)$ (14)

${L}_{1\perp }=\frac{b\Delta R}{{v}_{\text{1}}}\mathrm{cos}\left({\beta }_{0}+\Delta \theta \right)$ (15)

$\Delta {q}_{\perp }\Delta R={L}_{1}\mathrm{cos}\left({\beta }_{0}+\Delta \theta \right)\left[\Delta R-{L}_{1}\mathrm{sin}\left({\beta }_{0}+\Delta \theta \right)\right]-{L}_{0}\mathrm{cos}{\beta }_{0}{L}_{0}\mathrm{sin}{\beta }_{0}$ (16)

$\mathrm{tan}\gamma =\frac{\Delta {q}_{\perp }}{\Delta R}=\frac{b\mathrm{cos}\left({\beta }_{0}+\Delta \theta \right)}{{v}_{\text{1}}}-\frac{{b}^{2}\mathrm{cos}\left({\beta }_{0}+\Delta \theta \right)\mathrm{sin}\left({\beta }_{0}+\Delta \theta \right)}{{v}_{\text{1}}^{\text{2}}}-\frac{{b}^{2}\mathrm{cos}{\beta }_{0}\mathrm{sin}{\beta }_{0}}{{v}_{\text{0}}^{\text{2}}}$ (17)

${v}_{01}={v}_{0}\frac{\Delta R-{L}_{\text{1}}\mathrm{sin}\left({\beta }_{0}+\Delta \theta \right)}{\Delta R-{L}_{\text{1}}\mathrm{sin}\left({\beta }_{0}+\Delta \theta \right)-{L}_{\text{0}}\mathrm{sin}{\beta }_{0}}$ (18)

${v}_{1}={v}_{01}\frac{\Delta R-{L}_{\text{0}}\mathrm{sin}{\beta }_{0}}{\Delta R-{L}_{\text{0}}\mathrm{sin}{\beta }_{0}+{L}_{\text{1}}\mathrm{sin}\left({\beta }_{0}+\Delta \theta \right)}$ (19)

${v}_{1}={v}_{0}\frac{\Delta R-{L}_{1}\mathrm{sin}\left({\beta }_{0}+\Delta \theta \right)}{\Delta R-{L}_{1}\mathrm{sin}\left({\beta }_{0}+\Delta \theta \right)-{L}_{0}\mathrm{sin}{\beta }_{0}}\frac{\Delta R-{L}_{0}\mathrm{sin}{\beta }_{0}}{\Delta R-{L}_{0}\mathrm{sin}{\beta }_{0}+{L}_{1}\mathrm{sin}\left({\beta }_{0}+\Delta \theta \right)}$ (20)

${v}_{1}={v}_{0}\frac{\left[\Delta R-{L}_{0}\mathrm{sin}{\beta }_{0}\right]\text{}\left[\Delta R-{L}_{1}\mathrm{sin}\left({\beta }_{0}+\Delta \theta \right)\right]}{{\left[\Delta R-{L}_{0}\mathrm{sin}{\beta }_{0}\right]}^{2}-{\left[{L}_{1}\mathrm{sin}\left({\beta }_{0}+\Delta \theta \right)\right]}^{\text{2}}}$ (21)

${v}_{1}={v}_{0}\frac{\left[\Delta R-\frac{b\Delta R}{{v}_{\text{0}}}\mathrm{sin}{\beta }_{0}\right]\left[\Delta R-\frac{b\Delta R}{{v}_{\text{1}}}\mathrm{sin}\left({\beta }_{0}+\Delta \theta \right)\right]}{{\left[\Delta R-\frac{b\Delta R}{{v}_{\text{0}}}\mathrm{sin}{\beta }_{0}\right]}^{2}-{\left[\frac{b\Delta R}{{v}_{\text{1}}}\mathrm{sin}\left({\beta }_{0}+\Delta \theta \right)\right]}^{\text{2}}}$ (22)

${v}_{1}={v}_{0}\frac{\left[1-\frac{b}{{v}_{0}}\mathrm{cos}\left(\frac{\pi }{2}-{\beta }_{0}\right)\right]\left[1-\frac{b}{{v}_{1}}\mathrm{cos}\left(\frac{\pi }{2}-{\beta }_{0}-\Delta \theta \right)\right]}{{\left[1-\frac{b}{{v}_{0}}\mathrm{cos}\left(\frac{\pi }{2}-{\beta }_{0}\right)\right]}^{2}-{\left[\frac{b}{{v}_{1}}\mathrm{cos}\left(\frac{\pi }{2}-{\beta }_{0}-\Delta \theta \right)\right]}^{2}}$ (23)

$\begin{array}{l}{v}_{1}{}^{2}{\left[1-\frac{b}{{v}_{0}}\mathrm{cos}\left(\frac{\pi }{2}-{\beta }_{0}\right)\right]}^{2}-{v}_{1}{v}_{0}\left[1-\frac{b}{{v}_{0}}\mathrm{cos}\left(\frac{\pi }{2}-{\beta }_{0}\right)\right]\\ +b{v}_{0}\left[1-\frac{b}{{v}_{0}}\mathrm{cos}\left(\frac{\pi }{2}-{\beta }_{0}\right)\right]\mathrm{cos}\left(\frac{\pi }{2}-{\beta }_{0}-\Delta \theta \right)-{\left[b\mathrm{cos}\left(\frac{\pi }{2}-{\beta }_{0}-\Delta \theta \right)\right]}^{2}=0\end{array}$ (24)

${v}_{1}=\frac{{v}_{0}±\sqrt{{\left[{v}_{0}-2b\mathrm{cos}\left(\frac{\pi }{2}-{\beta }_{0}-\Delta \theta \right)\right]}^{2}+4{b}^{2}\mathrm{cos}\left(\frac{\pi }{2}-{\beta }_{0}-\Delta \theta \right)\mathrm{cos}\left(\frac{\pi }{2}-{\beta }_{0}\right)}}{2\left[1-\frac{b}{{v}_{0}}\mathrm{cos}\left(\frac{\pi }{2}-{\beta }_{0}\right)\right]}$ (25)

${\beta }_{\text{1}}={\beta }_{0}-\gamma +\Delta \theta$ (26)

${R}_{1}\mathrm{sin}{\beta }_{1}={R}_{0}\mathrm{sin}\left({\beta }_{0}-\gamma \right)$ (27)

${R}_{1}=\frac{{R}_{0}\mathrm{sin}\left({\beta }_{0}-\gamma \right)}{\mathrm{sin}{\beta }_{1}}$ (28)

3. 奥陌陌轨道偏离的原因：太阳斥力

Figure 3. The repulsive force of the planet

4. 奥陌陌运行轨道模拟

Table 1. Partial data of Oumuamua’s trajectory simulation

Figure 4. Simulation effect diagram of Oumuamua’s orbit data

Figure 5. Oumuamua speed change curve

Figure 6. Oumuamua acceleration change curve

5. 讨论

6. 结论

 [1] Dybczyński, P.A. and Królikowska, M. (2017) On the Dynamical History of the Interstellar Object ‘Oumuamua? https://doi.org/10.48550/arXiv.1711.06618 [2] Raymond, S.N., Armitage, P.J., Dimitri, V., et al. (2018) Im-plications of the Interstellar Object 1I/‘Oumuamua for Planetary Dynamics and Planetesimal Formation. Monthly Notices of the Royal Astronomical Society, 476, 3031-3038. https://doi.org/10.1093/mnras/sty468 [3] 苟利军. 奥陌陌: 太阳系外的神秘访客[J]. 中国科技术语, 2017, 19(6): 79-80. [4] Loeb, A. (2018) Six Strange Facts about ‘Oumuamua. [5] Bialy, S. and Loeb, A. (2018) Could Solar Radiation Pressure Explain ‘Oumuamua’s Peculiar Acceleration. The Astrophysical Journal Letters, 868, L1. https://doi.org/10.3847/2041-8213/aaeda8 [6] Sinraptor. 星际来客奥陌陌[J]. 小哥白尼: 趣味科学, 2018(6): 16-17. [7] 林落. 奥陌陌: 行星还是彗星? [J]. 科学新闻, 2018(7): 53-55. [8] Seligman, D., Laughlin, G. and Batygin, K. (2019) On the Anomalous Acceleration of 1I2017 U1 ‘Oumuamua. The Astrophysical Journal Letters, 876, L26. https://doi.org/10.3847/2041-8213/ab0bb5 [9] 倪春, 朱向东. “奥陌陌”外星飞行器[J]. 儿童故事画报, 2019(12): 18-19. [10] 瞿立建. 太阳系发现外星来客?——阿维•勒布访谈录[J]. 世界科学, 2019(6): 46-48. [11] 土星号. 来自外星文明的奥陌陌? [J]. 太空探索, 2019(1): 50-53. [12] Hoang, T. and Loeb, A. (2020) Destruction of Molecular Hydrogen Ice and Implications for 1I2017 U1 (‘Oumuamua). The Astrophysical Journal Letters, 899, L23. https://doi.org/10.3847/2041-8213/abab0c [13] Wilhelm, K. and Dwivedi, B. (2020) Anomalous Sun Flyby of 1I2017 U1 (‘Oumuamua). Galaxies, 8, Article No. 83. https://doi.org/10.3390/galaxies8040083 [14] Seligman, D. and Laughlin, G. (2020) Evidence That 1I2017 U1 (‘Oumuamua) Was Composed of Molecular Hydrogen Ice. The Astrophysical Journal Letters, 896, L8. https://doi.org/10.3847/2041-8213/ab963f [15] 春泉. 天外来客奥陌陌我是谁[J]. 学与玩, 2020(4): 44-46. [16] 张唯诚. 奥陌陌的身份之谜[J]. 科学24小时, 2021(9): 24-26. [17] Team, O.I. (2023) The Natural History of ‘Ou-muamua. Nature Astronomy. [18] 奥陌陌[EB/OL]. 百度百科. https://baike.baidu.com/link?url=cLsx6iy5LqsMwiIS-8xPnw4l4vHmEkm5qlXdfsRE65jGnOXly_A-CaSwO7acagwiNoXNlhdxhGRwQsf2g1Fy9LOwCeBwWprbLqmeNzUOfVt68jBZTLn-eDYUWv-JZnai, 2023-07-25. [19] 陈军利, 康耀辉. 引力、引力场和引力子[J]. 天文与天体物理, 2022, 10(1): 1-10. [20] 陈军利. 引力是如何产生的——引力线在偏转物体的运动方向[J]. 天文与天体物理, 2022, 10(2): 11-24. [21] Dybczyński, P.A. and Królikowska, M. (2017) On the Dynamical History of the Interstellar Object ‘Oumuamua? https://doi.org/10.48550/arXiv.1711.06618 [22] Raymond, S.N., Armitage, P.J., Dimitri, V., et al. (2018) Im-plications of the Interstellar Object 1I/‘Oumuamua for Planetary Dynamics and Planetesimal Formation. Monthly Notices of the Royal Astronomical Society, 476, 3031-3038. https://doi.org/10.1093/mnras/sty468 [23] 苟利军. 奥陌陌: 太阳系外的神秘访客[J]. 中国科技术语, 2017, 19(6): 79-80. [24] Loeb, A. (2018) Six Strange Facts about ‘Oumuamua. [25] Bialy, S. and Loeb, A. (2018) Could Solar Radiation Pressure Explain ‘Oumuamua’s Peculiar Acceleration. The Astrophysical Journal Letters, 868, L1. https://doi.org/10.3847/2041-8213/aaeda8 [26] Sinraptor. 星际来客奥陌陌[J]. 小哥白尼: 趣味科学, 2018(6): 16-17. [27] 林落. 奥陌陌: 行星还是彗星? [J]. 科学新闻, 2018(7): 53-55. [28] Seligman, D., Laughlin, G. and Batygin, K. (2019) On the Anomalous Acceleration of 1I2017 U1 ‘Oumuamua. The Astrophysical Journal Letters, 876, L26. https://doi.org/10.3847/2041-8213/ab0bb5 [29] 倪春, 朱向东. “奥陌陌”外星飞行器[J]. 儿童故事画报, 2019(12): 18-19. [30] 瞿立建. 太阳系发现外星来客?——阿维•勒布访谈录[J]. 世界科学, 2019(6): 46-48. [31] 土星号. 来自外星文明的奥陌陌? [J]. 太空探索, 2019(1): 50-53. [32] Hoang, T. and Loeb, A. (2020) Destruction of Molecular Hydrogen Ice and Implications for 1I2017 U1 (‘Oumuamua). The Astrophysical Journal Letters, 899, L23. https://doi.org/10.3847/2041-8213/abab0c [33] Wilhelm, K. and Dwivedi, B. (2020) Anomalous Sun Flyby of 1I2017 U1 (‘Oumuamua). Galaxies, 8, Article No. 83. https://doi.org/10.3390/galaxies8040083 [34] Seligman, D. and Laughlin, G. (2020) Evidence That 1I2017 U1 (‘Oumuamua) Was Composed of Molecular Hydrogen Ice. The Astrophysical Journal Letters, 896, L8. https://doi.org/10.3847/2041-8213/ab963f [35] 春泉. 天外来客奥陌陌我是谁[J]. 学与玩, 2020(4): 44-46. [36] 张唯诚. 奥陌陌的身份之谜[J]. 科学24小时, 2021(9): 24-26. [37] Team, O.I. (2023) The Natural History of ‘Ou-muamua. Nature Astronomy. [38] 奥陌陌[EB/OL]. 百度百科. https://baike.baidu.com/link?url=cLsx6iy5LqsMwiIS-8xPnw4l4vHmEkm5qlXdfsRE65jGnOXly_A-CaSwO7acagwiNoXNlhdxhGRwQsf2g1Fy9LOwCeBwWprbLqmeNzUOfVt68jBZTLn-eDYUWv-JZnai, 2023-07-25. [39] 陈军利, 康耀辉. 引力、引力场和引力子[J]. 天文与天体物理, 2022, 10(1): 1-10. [40] 陈军利. 引力是如何产生的——引力线在偏转物体的运动方向[J]. 天文与天体物理, 2022, 10(2): 11-24.