平衡挠积埃尔米特流形
Balanced Twisted Product Hermitian Manifold
DOI: 10.12677/PM.2023.1310297, PDF, 下载: 240  浏览: 295  国家自然科学基金支持
作者: 李淑雯, 加依达尔·里扎别克:新疆师范大学数学科学学院,新疆 乌鲁木齐;卢晓英:陆军边海防学院乌鲁木齐校区,新疆 乌鲁木齐;何 勇*:1新疆师范大学数学科学学院,新疆 乌鲁木齐
关键词: 埃尔米特流形挠积平衡流形Hermitian Manifold Twisted Product Balanced Manifold
摘要: 设(M1,g) 和(M2,h) 是两个埃尔米特流形,挠积埃尔米特流形(M1×fM2,G) 是赋予了埃尔米特度量 G = g+f2h 的乘积流形M1×M2,这里f是M1×M2上的光滑函数。本文推导出挠积埃尔米特流形的挠率和挠率(1,0)形式,给出埃尔米特流形(M1×fM2,G)平衡的充分必要条件。
Abstract: Let (M1,g) and (M2,h) be two Hermitian manifolds. The twisted product Hermitian manifold (M1×fM2,G) is the product manifold M1×M2 endowed with the Hermitian metric G = g+f2h , where f is a positive smooth function on M1×M2. In this paper, the torsion tensor and torsion (1,0) forms of the twisted product Hermitian manifold are derived. Sufficient and necessary conditions are given that (M1×fM2,G) is balanced.
文章引用:李淑雯, 卢晓英, 何勇, 加依达尔·里扎别克. 平衡挠积埃尔米特流形[J]. 理论数学, 2023, 13(10): 2908-2915. https://doi.org/10.12677/PM.2023.1310297

参考文献

[1] Liu, K.F. and Yang, X.K. (2012) Geometry of Hermitian Manifolds. International Journal of Mathematics, 23, Article 1250055.
https://doi.org/10.1142/S0129167X12500553
[2] Calabi, E. and Eckmann, B. (1953) A Class of Compact, Complex Manifolds Which Are Not Algebraic. Annals of Mathematics, 58, 494-500.
https://doi.org/10.2307/1969750
[3] Michelsohn, M.L. (1982) On the Existence of Special Metrics in Complex Geometry. Acta Mathematica, 149, 261-295.
https://doi.org/10.1007/BF02392356
[4] Ganchev, G. and Ivanov, S. (2001) Harmonic and Holomorphic 1-Forms on Compact Balanced Hermitian Manifolds. Differential Geometry and Its Applications, 14, 79-93.
https://doi.org/10.1016/S0926-2245(00)00039-5
[5] Alessandrini, L. and Bassanelli, G. (2004) A Class of Balanced Manifolds. Proceedings of the Japan Academy, Series A, Mathematical Sciences, 80, 6-7.
https://doi.org/10.3792/pjaa.80.6
[6] Liu, K.F. and Yang, X.K. (2012) Geometry of Hermitian Manifolds. International Journal of Mathematics, 23, Article 1250055.
https://doi.org/10.1142/S0129167X12500553
[7] Fu, J., Li, J. and Yau, S.T. (2012) Balanced Metrics on Non-Kahler Calabi-Yau Threefolds. Journal of Differential Geometry, 90, 81-129.
https://doi.org/10.4310/jdg/1335209490
[8] Bishop, R.L. and O.Neill, B. (1969) Manifolds of Negative Curvature. Transactions of the American Mathematical Society, 145, 1-49.
https://doi.org/10.1090/S0002-9947-1969-0251664-4
[9] Kozma, L., Peter, I.R. and Varga, C. (2001) Warped Product of Finsler-Manifolds. Annales University Scientiarum Budapestinensis de Rolando Eotvos Nominatae. Sectio Mathematica, 44, 157-170.
[10] He, Y. and Zhong, C. (2016) On Doubly Warped Product of Complex Finsler Manifolds. Acta Mathematica Scientia, 36, 1747-1766.
https://doi.org/10.1016/S0252-9602(16)30103-5
[11] He, Y. and Zhang, X.L. (2018) On Doubly Warped Product of Hermitian Manifolds. Acta Mathematica Sinica, Chinese Series, 61, 835-842.
[12] Ni, Q.H., He, Y., Yang, J.H. and Zhang, H. (2022) Levi-Civita Ricci-Flat Doubly Warped Product Hermitian Manifolds. Advances in Mathematical Physics, 509, Article 125981.
https://doi.org/10.1155/2022/2077040
[13] Chen, B.Y. (1981) Geometry of Submanifolds and Its Applications. Science University of Toky- o, Tokyo.
[14] Kozma, L., Peter, I.R. and Shimada, H. (2006) On the Twisted Product of Finsler Manifolds. Reports on Mathematical Physics, 57, 375-383.
https://doi.org/10.1016/S0034-4877(06)80028-5
[15] Xiao, W., He, Y., Tian, C., et al. (2022) Complex Einstein-Finsler Doubly Twisted Product Metrics. Journal of Mathematical Analysis and Applications, 509, Article 125981.
https://doi.org/10.1016/j.jmaa.2021.125981
[16] Liu, K. and Yang, X. (2017) Ricci Curvatures on Hermitian Manifolds. Transactions of the American Mathematical Society, 369, 5157-5196.
https://doi.org/10.1090/tran/7000