lncRNA在肺动脉高压血管平滑肌细胞中的作用
The Effect of lncRNA in Vascular Smooth Muscle Cells of Pulmonary Hypertension
DOI: 10.12677/HJBM.2024.141001, PDF, HTML, XML, 下载: 179  浏览: 370  科研立项经费支持
作者: 凌振航*, 范 园*, 贾成真, 肖 娟, 范晓航#:湖北文理学院基础医学院,湖北 襄阳;刘丙勋:华中科技大学同济医学院病理生理学系,湖北 武汉
关键词: 肺动脉高压长链非编码RNA肺动脉平滑肌细胞Pulmonary Hypertension Long Non-Coding RNA Pulmonary Artery Smooth Muscle Cells
摘要: 肺动脉高压(pulmonary hypertension, PH)是一种病因复杂的进行性疾病,目前仍无法治愈,其病理特征主要是肺血管明显重构、肺动脉压力升高及右心室肥厚。长链非编码RNA (lncRNA)是一类长度超过200 nt不具有编码蛋白能力的RNA。近年来,越来越多的研究发现lncRNA在PH发生机制中发挥重要作用。抗凋亡、过度增殖和迁移是肺动脉平滑肌细胞(PASMCs)失调导致血管重构的主要机制,而血管重构是PH发病机制的关键因素。本文主要概述在PH中调节PASMCs功能的lncRNA及其作用机制。
Abstract: Pulmonary hypertension (PH) is a progressive disease with complex etiology, which is still incurable, and its pathological characteristics are mainly significant pulmonary vascular remodeling, elevated pulmonary artery pressure, and right ventricular hypertrophy. Long non-coding RNA (lncRNA) is a class of RNA longer than 200 nt that cannot encode proteins. Recently, more and more studies have found that lncRNA plays an important role in the pathogenesis of PH. Pulmonary vascular remodeling caused by excessive proliferation, migration and anti-apoptosis of pulmonary artery smooth muscle cells (PASMCs) is a key in the pathogenesis of PH. This paper mainly reviewed the molecular mechanism of lncRNA regulating PASMCs function and participating in the development of PH.
文章引用:凌振航, 范园, 贾成真, 肖娟, 刘丙勋, 范晓航. lncRNA在肺动脉高压血管平滑肌细胞中的作用[J]. 生物医学, 2024, 14(1): 1-20. https://doi.org/10.12677/HJBM.2024.141001

1. 引言

肺动脉高压(pulmonary hypertension, PH)是以肺血管明显重构和肺血管阻力进行性增高为特征的综合征,可导致右心室(right ventricle, RV)肥厚,患者往往因右心室功能衰竭而死亡,预后较差 [1] 。因患者发病的临床症状不典型、病因复杂和死亡率高等特点,PH又被称为“心血管系统的恶性肿瘤”。在2018年召开的第六届世界肺动脉高压研讨会上,提议将PH定义修订为静息时平均肺动脉压(mean pulmonary pressure, mPAP) > 20 mmHg [1] ,并按照发病原因将其分为动脉性肺动脉高压(pulmonary arterial hypertension, PAH)、左心疾病相关性PH、肺部疾病和/或低氧相关性PH、肺动脉阻塞所致PH和不明原因导致的PH这5类。随着PH的研究不断进展,虽然发病机制尚不清楚,但有关PH的临床处理思路已经从先前的延缓终末期疾病死亡率演变为早期诊断和靶向治疗,患者5年生存率从1991年的34%提高到2015年的60%以上 [2] 。目前,美国食品和药物管理局(FDA)批准的PH靶向治疗药物包括磷酸二酯酶-5抑制剂、前列环素类似物和内皮素受体拮抗剂,分别靶向一氧化氮途径、前列环素途径和内皮素途径进行治疗 [1] 。通过这些特异性治疗,虽然靶向药物可改善患者症状,但从长远来看,其长期疗效及预后仍较差,识别和抑制潜在的分子机制对于逆转肺血管重构以改善患者预后至关重要。有研究表明长链非编码RNA (long non-coding RNA, lncRNA)通过参与肺血管重构促进肺动脉高压的发生与发展 [3] 。本文将结合lncRNA在肺动脉高压领域的研究现状,综述其作用于PASMCs参与肺动脉高压发生的机制,以期为临床PH治疗提供新的研究思路和治疗靶点。

2. 长链非编码RNA概述

lncRNA首次于2002年被Okazaki等人发现 [4] ,是一类长度超过200 nt的RNA,是RNA聚合酶II转录的副产物,由于缺乏完整的开放阅读框而不具有编码蛋白能力,曾被认为是“转录噪音”,不具有生物学功能 [5] 。绝大多数lncRNA位于细胞核,它们对应的DNA区域有的与蛋白编码基因重叠,有的位于基因之间或者内含子中,因此,根据其在蛋白质编码区附近的基因组位置,lncRNA分为五类:正义链lncRNA、反义链lncRNA、内含子lncRNA、基因间lncRNA和双向lncRNA [6] 。lncRNA的功能主要有吸附miRNA、顺式或反式调控转录、结合蛋白质、结合RNA、结合核糖体等 [7] 。虽然lncRNA没有编码任何蛋白质,但它们的表达在不同组织和发育阶段依然具有特异性 [8] 。大部分lncRNA保守性较低,但细胞特异性和组织特异性高 [8] 。lncRNA可通过充当诱饵、信号分子和支架分子来调控基因表达的转录和转录后调控,也可作为内源性竞争RNA (ceRNA)从其mRNA靶基因上吸走miRNAs来间接调节基因表达。目前研究显示lncRNA具有重要的生物学意义,在一系列病理生理过程中发挥着重要作用,例如细胞活动调节(如增殖、迁移、凋亡、血管生成、代谢)、炎症和免疫应答以及血管血管生成 [9] [10] [11] [12] [13] 。在多种体液中(如尿液、血液)可检测到稳定存在的lncRNA,或许可以作为疾病诊断的潜在标志物 [14] 。

越来越多的研究表明lncRNAs在血管生物学稳态维持方面起重要作用,在肿瘤 [15] 、心血管疾病 [16] 、呼吸系统疾病 [17] 中有重大研究价值。已发现lncRNA MALAT1和lncRNA MEG3可促进PASMCs增殖和血管生成,lncRNA ANRIL可调节血管平滑肌细胞的增殖和表型转换,lncRNA Cox2促进白细胞激活,lncRNA GAS5调节巨噬细胞极化等 [16] 。

3. 肺动脉高压发病机制新进展

肺动脉高压的病理特征主要是肺小动脉重构、肺动脉压力升高、右心室肥厚,其中最主要的表现是肺小动脉重构 [18] 。遗传因素以及外界环境因素如低氧、炎症、氧化应激、药物或毒物等可致肺动脉平滑肌细胞(pulmonary artery smooth muscle cells, PASMCs)过度增殖、肺动脉内皮细胞(pulmonary artery endothelial cells, PAECs)功能失调、血管外膜成纤维细胞异常增殖、血管外胶原沉积等改变,最终导致血管壁增厚、肺小动脉进行性重构、肺血管阻力增加 [19] 。目前肺动脉高压的研究主要涉及G蛋白耦联受体通路、离子通道、非编码RNAs、生长因子受体、炎症介质等方向 [20] [21] 。

肺动脉高压的病理过程中有多种炎症细胞和细胞因子的参与。炎症细胞,如巨噬细胞、树突状细胞、T和B淋巴细胞等参与了炎症介导的PH发生与发展 [22] 。在肺动脉高压患者和动物模型的肺血管周围不仅有大量炎性细胞的浸润,且外周血循环中细胞因子和炎症趋化因子显著增加,例如白介素-1α (IL-1α)、白介素-1β (IL-1β)、血小板衍生生长因子β多肽b (platelet derived growth factors beta polypeptide b, PDGF-BB)、白介素6 (IL-6)、血管内皮生长因子(VEGF)、肿瘤坏死因子α (TNF-α)等 [22] [23] 。PDGF-BB是一种促细胞分裂素,可以刺激PASMCs增殖 [24] [25] 。除炎症外,肾素–血管紧张素系统(RAAS)在肺动脉高压发生中也起着重要作用。肾素将血管紧张素原剪切成血管紧张素I (Ang I),继而被血管紧张素转化酶(ACE)转变为血管紧张素II (Ang II) [26] 。Ang II通过Ang II 1型受体(AT1R)途径促进PASMCs增殖、迁移、收缩,该途径称为ACE-Ang II-AT1R轴 [27] 。AT1R拮抗剂氯沙坦可以有效改善野百合碱(MCT)诱导的肺血管重构,减轻右心负荷,阻止肺动脉高压发展 [28] 。但AT1R拮抗剂在临床的应用效果还有待进一步探索。

新生儿持续肺动脉高压是第一类肺动脉高压的一个亚类,其中由先天性膈疝(congenital diaphragmatic hernia, CHD)引起的持续性PH是该类患儿出生就死亡的重要原因,目前活产CDH婴儿的死亡率接近25%~30% [29] 。通过对先天性膈疝患者的基因组测序,与小鼠膈肌发育过程的基因进行相关分析,发现了越来越多的与先天性膈疝发病机制有关的候选基因 [30] ,其中编码同源结构域的转录因子Pbx基因备受关注。McCulley等人成功构建了靶向肺间质Pbx1/2敲除小鼠模型 [31] ,并揭示了Pbx通过调控围产期和新生儿早期肺血管收缩和舒张平衡来参与新生儿持续性PH的发病机制 [31] 。然而运用内皮素受体拮抗剂或血管紧张素转换酶抑制(ACEI)均不能有效抑制Pbx1/2敲除小鼠出生后的肺动脉高压,而运用Rho激酶抑制剂Y-27632抑制肌球蛋白轻链磷酸化后可显著阻断Pbx1/2敲除小鼠出生后的肺动脉压力升高。上述结果表明,虽然出生后调节肺血管舒缩物质失衡是新生儿持续性肺动脉高压发病的重要机制,但简单地通过抑制剂等方法抑制缩血管物质并不能有效缓解,只有通过抑制平滑肌收缩的效应蛋白肌球蛋白轻链的功能才能对该类肺动脉高压起到一定的缓解。

4. lncRNA与肺动脉高压

目前越来越多的研究表明lncRNA在PH中差异性表达,参与肺动脉高压的发生。Han B等人 [3] 发现2511个lncRNAs在特发性肺动脉高压(idiopathic pulmonary arterial hypertension, IPAH)病人外周血淋巴细胞中差异表达,可能参与了淋巴细胞介导的IPAH的发生。Cao Y等 [32] 分析MCT联合LPS急性诱导的大鼠急性右心衰心肌组织lncRNA芯片发现,169个差异表达的lncRNAs可能参与了血管生成和TNF信号通路等。

最近,已有研究证明lncRNA与肺血管重构和肺动脉高压发病机制有关 [33] 。抗凋亡、过度增殖和迁移是肺动脉平滑肌细胞失调导致血管重构的主要机制,而血管重构是肺动脉高压发病机制的关键决定因素。多种信号通路与PASMCs的失调有关,如TGF-β信号通路、PDGF信号通路、雌激素信号通路、MAPK信号通路、PI3K/AKT/mTOR信号通路、Wnt信号通路、Notch信号通路和hedgehog信号通路等 [25] [34] [35] [36] 。此外,缺氧、凋亡通路、包括miRNA和lncRNA在内的非编码RNA也被报道为PASMCs功能障碍的关键角色,它们通过调控PASMCs增殖、凋亡以及肺血管重构参与PH的发生 [33] 。2019年Wang D等 [37] 报道lncRNA MALAT1可通过抑制miR-124-3p.1促进KLF5的表达,进一步促PASMCs进入增殖期。PDGF-BB和TGF-β刺激PASMCs后,lncRNA LnRPT表达下调,导致细胞周期蛋白CCNA2表达升高和Notch信号通路激活,PASMCs增殖增加 [38] 。由此推测肺动脉平滑肌细胞的增殖失调将成为PH药物治疗的潜在靶点。参与调控PASMCs功能的相关lncRNA见表1表2

4.1. 肺动脉高压PASMCs中双向调节的lncRNA

4.1.1. lncRNA H19

lncRNA H19 (以下简称H19)是最早发现的lncRNA之一,位于人类基因组11p15.5染色体附近,具有高度保守的二级结构 [39] 。H19具有较为复杂的生物学功能,不仅可作为分子海绵调节miRNA,还可与各种蛋白质相互作用调节基因表达,而且是miR-675的主要前体 [40] 。以往的研究显示H19在肿瘤的转移和发展、缺氧、代谢、炎症及氧化应激中起至关重要的作用 [40] 。H19可通过miR-146a-5p/ANGPTL4途径 [41] 、MAPK和NF-kB信号通路 [42] 等方式促进动脉粥样硬化(Atherosclerosis,AS)的发展。H19含有miRNA let-7b的结合位点,可通过let-7b调控发育、癌症进展和细胞生长 [43] 。2018年Su H等 [44] 研究显示H19在野百合碱(MCT)诱导的小鼠和大鼠PH模型的血清和肺组织中均过表达,且在体外采用多种细胞因子刺激PASMCs表达H19,结果显示不同剂量的血小板衍生生长因子β多肽b (PDGF-BB)刺激PASMCs时,H19的表达最高,呈剂量依赖性;H19通过海绵化吸附let-7b增强血管紧张素II受体1型(AT1R)的表达水平,从而促进PASMCs增殖,促进肺动脉高压的发生。而采用H19-/-mice构建MCT诱导的PH模型中,敲除H19可明显改善小鼠右心室收缩压和肺动脉重构 [44] 。而PDGF调控H19的具体机制尚不清楚。

然而,Wang等人的一项研究结果却与之相反,MCT诱导的PH大鼠的H19、PDCD4和miR-675-3p水平明显降低,但IGF1R和miR-200a的表达较高 [45] 。miR-675-3p可靶向IGF1R,miR-200a靶向PDCD4,采用褪黑素治疗可通过调节H19/miR200a/PDCD4和H19/miR-675-3p/IGF1R信号轴,抑制PASMCs的增殖,增强细胞凋亡。因此,H19在肺血管重构中的作用不清楚,尚存在争议。

Table 1. Up-regulated lncRNA in PASMCs of pulmonary hypertension

表1. 肺动脉高压PASMCs中上调的lncRNA

Abbreviation: hPASMCs: human pulmonary artery smooth muscle cells; PASMCs: pulmonary artery smooth muscle cells; IPAH: idiopathic pulmonary arterial hypertension; CTD-PAH: connective tissue disease associated with PAH; HPH: hypoxia-induced pulmonary hypertension; TRPC6: transient receptor potential canonical 6; NA: not available.

Table 2. Down-regulated lncRNA in PASMCs of pulmonary hypertension

表2. 肺动脉高压PASMCs中下调的lncRNA

Abbreviation: RVSP: right ventricular systolic pressure; RV/(LV + S): ratio of the weight of the right ventricle to the sum of the weight of the left ventricle and septum (右心室肥厚指数)。

此外,2020年Omura J等 [46] 发表在Circulation的研究显示,经127例特发性肺动脉高压患者、52例结缔组织疾病相关PAH (CTD-PAH)患者、以及大鼠野百合碱致肺动脉高压(MCT-PH)模型的外周血血浆和右心室组织qRT-PCR分析发现H19显著上调,且血浆H19水平较低的IPAH患者有较长的长期生存率。通过采用修饰的反义寡核苷酸(GapmeRs)靶向H19明显下调H19可改善PH患者的病理性右心室重构和右心室功能 [46] 。该团队的研究结果显示H19作为一种新的治疗靶点,可阻止右心室重构不良的发展,并有望成为肺动脉高压严重程度和预后的生物标志物。

4.1.2. lncRNA Maternally Expressed Gene 3 (lncRNA MEG3)

缺氧微环境是PASMCs失调导致肺动脉高压发病的关键因素。到目前为止,已发现多个lncRNA如Tug1 [47] 、Hoxa cluster antisense RNA 3 (HOXA-AS3) [48] 和maternally expressed gene 3 (MEG3) [49] 在小鼠缺氧诱导的PH模型中表达上调,通过缺氧信号通路促进PASMCs的增殖和迁移。MEG3是位于人类14q32.3染色体上的印记基因,在多种癌症中表达下调,曾被认为是一种肿瘤抑制因子。2017年Sun Z等 [49] 在人群样本的研究显示,与对照组相比,MEG3在PH患者的肺组织和肺动脉中显著下调,MEG3下调所诱导的PASMCs增殖可通过p53通路来调节,从而增强低氧状态下人PASMCs (human pulmonary artery smooth muscle cells, hPASMCs)增殖和迁移;2018年Zhu B等人 [50] 研究发现在缺氧状态下MEG3在hPASMCs中下调,下调的MEG3可通过调节miR-21抑制PTEN在缺氧条件下促进hPASMCs增殖和迁移。

然而2019年Xing Y等人 [51] 关于MEG3的研究显示了与前述完全相反的结果,该团队发现MEG3在缺氧引起的PH (hypoxia-induced pulmonary hypertension, HPH)小鼠肺动脉和特发性肺动脉高压患者的PASMCs中均明显升高,促进PASMCs增殖 [51] ;且MEG3可通过nt 2071-2094直接与miR-328-3p结合,上调的MEG3作为分子海绵可隔离miR-328-3p,导致胰岛素样生长因子1受体(IGF1R)表达增加,从而促进PASMCs过度增殖,促进HPH的发展。不同研究中MEG3表达趋势的差异可能是由于细胞分布、时间点、内部参考差异以及选择的MEG3转录突变体不同所致,因此,需要更多更深入研究来验证MEG3在PH中的作用。

4.2. 肺动脉高压PASMCs中上调的lncRNA

4.2.1. Metastasis-Associated Lung Adenocarcinoma Transcript 1 (MALAT1)

肺腺癌转移相关转录本1 (MALAT1)又称NEAT2或长基因间非蛋白编码RNA47 (LINC00047)是一种广泛表达高度保守的lncRNA,长度超过8 kb,位于人类染色体11q13和小鼠染色体19qA内 [52] ,它是目前研究最多的lncRNA之一,参与胃癌、前列腺癌和非小细胞肺癌等多种癌症的发病机制。Wang D等 [37] 报道了MALAT1在遗传性肺动脉高压(HPAH)患者的肺动脉组织和PASMCs中显著高于与健康者,MALAT1过表达可促进HPAH患者PASMCs增殖,增加细胞周期蛋白的表达,使细胞处于G2/M+S期的百分比增加,而敲低MALAT1显著抑制细胞活力和增殖,阻止细胞进入G0/G1细胞周期。与H19类似,MALAT1已被确定为PASMCs中的ceRNA,它通过海绵化抑制miR-124-3p.1,间接上调Krupple样因子5 (KLF5)转录因子和下游信号,从而引起细胞周期过度活跃,增强PASMCs的增殖和迁移 [37] 。此外,持续缺氧5周的PH小鼠肺组织、以及低氧条件的hPASMCs可显著增加MALAT1的表达 [53] ,靶向干扰MALAT1可影响PASMCs表型,通过诱导细胞周期蛋白依赖性激酶抑制剂的表达,抑制PASMCs增殖和迁移 [53] 。而Zhuo Y等 [54] 中国南方人PH易感性的病例对照研究(587例PH患者vs健康对照者)在MALAT1基因上识别到与PH易感性相关的单核苷酸多态性rs619586A > G,G变异基因型携带者患PH的风险可降低。进一步的功能实验表明,rs619586A > G可内源性竞争miR-214而直接上调X box-binding protein 1 (XBP1)的表达,通过缩短S-M相变,从而抑制血管内皮细胞的增殖和迁移 [54] 。此外,还有研究表明MALAT1在PH患者血浆和缺氧诱导的hPASMCs中高表达,通过调节miR-503/Toll样受体4促进hPASMCs增殖和迁移 [55] 。这显示MALAT1可能通过多种路径促进PASMCs的增殖。

4.2.2. lncRNA Taurine-Up-Regulated Gene 1(lncRNA TUG1)

非编码RNA牛磺酸上调基因1(TUG1)最初是在牛磺酸处理的小鼠视网膜细胞的基因组筛选中发现,是定位于人类基因组22q12.2染色体上高度保守的lncRNA,由7598个核苷酸组成 [56] 。TUG1可通过染色质重构、充当micro-RNAs或蛋白质的诱饵等不同的表观遗传机制在多种生物过程中发挥作用。研究表明TUG1在缺氧诱导的PH小鼠及PASMCs中表达上调 [57] ,通过内源性竞争抑制miR-328-3p促进PASMCs的增殖反应(包括细胞活力、5-溴脱氧尿苷掺入、增殖细胞核抗原的表达和细胞周期进展)。Yang L等 [47] 通过缺氧诱导的PH模型发现,TUG1在HPH-PASMCs中明显升高,且升高的TUG1可通过海绵化miR-374c增强Foxc1的表达,从而通过Notch信号刺激PASMCs的增殖和迁移、抑制凋亡,加重肺血管重构;而沉默TUG1则是相关的效应,抑制HPH肺血管重构 [8] 。这些研究表明,TUG1在PH血管重塑中起着关键作用,对PH的治疗具有重要意义。然而,TUG1是否还通过炎症、免疫反应、内皮–间质转化及表型转换等其他机制调节PH还需进一步的研究。

4.2.3. lncRNA HOXA Cluster Antisense RNA 3 (lncRNA HOXA-AS3)

HOXA-AS3是一种新发现的lncRNA,具有25,952个碱基,位于人类染色体7p15.2,HOXB5 3’端下游900 nt处,属于HOX基因簇,是一组高度同源的转录因子,可调节胚胎发育和造血谱系和分化 [58] 。大量研究表明,HOXA-AS3的表达与多种人类疾病和病理生理过程有关,包括肝癌、胶质瘤、肺癌、口腔癌、结直肠癌、胃癌、胰腺癌、子宫内膜异位症、动脉粥样硬化、肺动脉高压,甚至与间充质干细胞(MSCs)的谱系分化有关。高表达HOXA-AS3的肿瘤恶性程度更高,且HOXA-AS3可通过诱导细胞增殖、凋亡、迁移、侵袭、化疗耐药、MSCs分化等多种细胞过程,调控多种疾病的发生和进展 [58] 。Li ZK等 [59] 在缺氧刺激的hPASMCs中发现HOXA-AS3和磷酸二酯酶5A (phosphodiesterase 5A, PDE5A)表达上调,miR-675-3p表达下调,敲低HOXA-AS3可明显抑制hPASMCs增殖和迁移,诱导凋亡;采用双荧光素酶报告基因验证了HOXA-AS3与miR-675-3p的相关性,且miR-675-3p可直接靶向PDE5A,进一步的细胞实验显示HOXA-AS3通过调控miR-675-3p/PDE5A轴促进PH的发展。然而这些结果仅限体外实验,尚缺乏体内研究的证据,而Zhang H [48] 等人的研究正好弥补这一点,该团队在缺氧和MCT分别诱导的PH小鼠模型中发现HOXA-AS3在肺血管中均上调,在临床收集的PH患者肺组织中也表达增高,并促进PASMCs的增殖;组蛋白3赖氨酸9(H3K9)乙酰化促进缺氧刺激的PASMCs表达HOXA-AS3,细胞流式显示缺氧增加了PASMCs中S+G2/M期细胞的百分比,过表达的HOXA-AS3可上调cyclin A、cyclin D和cyclin E表达水平,通过加速细胞周期调节PASMCs增殖能力;并采用Hoxaas3或LacZ的反义探针对PASMCs进行ChIRP实验,结果表明HOXA-AS3能直接结合到其对应的Hoxa3基因区域,HOXA-AS3敲低可抑制PASMCs中Hoxa3的表达,证实高水平的HOXA-AS3通过上调PASMCs中Hoxa3 mRNA和蛋白水平来调节细胞周期分布 [48] 。

4.2.4. lncRNA Tyrosine Kinase Receptor Inducing lncRNA (lncRNA TYKRIL)

Zehendner等人 [60] 利用IPAH患者的PASMCs、周细胞(pericytes)和缺氧诱导的PASMC、周细胞的RNAseq数据分析,发现了一种新的lncRNA,称为酪氨酸激酶受体诱导lncRNA (TYKRIL),生物信息学分析发现其是所有条件下唯一普遍上调的lncRNA。HIF、PDGF、IL-18和TGF-β等促肺动脉高压因子可诱导TYKRIL表达上调。在这些高增殖条件下,TYKRIL作为p53诱饵,可调节PDGFRβ的表达,已证明TYKRIL通过p53/PDGFRβ信号轴促进PASMC的增殖并抑制凋亡;由于TYKRIL在动物体内的保守性较差,Zehendner对IPAH患者肺部采集的离体精确切割肺片(PCLS)进行了研究,发现GapmeR介导的TYKRIL在PCLS中下调可逆转肺血管重构,提示TYKRIL对IPAH和缺氧相关PH有潜在的治疗作用 [60] 。此外,TYKRIL在缺氧的内皮细胞和IPAH患者分离的内皮成纤维细胞中也上调,观察到TYKRIL在原代培养的人周细胞中也可发挥相关病理生理功能,调节内皮细胞的分化和增殖 [60] 。

4.2.5. lncRNA Urothelial Carcinoma Associated 1 (lncRNA UCA1)

尿路上皮癌相关蛋白1 (UCA1)位于人类染色体19p13.12 上,其整个序列由三个外显子组成,分别编码长度为1.4 kb、2.2 kb和2.7 kb的三个亚型,在膀胱移行细胞癌中首次发现UCA1显著上调,并作为膀胱癌特异性标志物可在多种肿瘤中异常表达 [61] 。研究证实,UCA1在细胞增殖、侵袭、迁移、凋亡、转移等多个细胞过程中发挥重要作用 [62] 。有研究通过lncRNAs微阵列芯片分析发现,在缺氧的hPASMCs中,UCA1明显高表达 [63] 。在缺氧条件下,lncRNA UCA1通过与ING5竞争hnRNP I来促进缺氧的hPASMCs增殖并抑制细胞凋亡 [63] ,这为低氧性肺动脉高压的治疗提供了新的研究思路。

4.2.6. lncRNA Smooth Muscle-Induced lncRNA Enhanced Replication (SMILR)

平滑肌富集lncRNA (SMILR)在PH患者、MCT诱导的PH大鼠模型和缺氧诱导的人PASMCs (hPASMCs)中被证明高表达。此外,体外研究表明,下调SMILR可通过靶向miR-141抑制缺氧诱导的PASMCs增殖和迁移。尤其在MCT诱导的PH大鼠模型中,SMILR shRNA通过靶向miR-141调控RhoA/ROCK信号通路改善PH和肺血管重构 [64] ,这表明靶向SMILR在治疗PH方面具有很大的潜力。Ballantyne MD已证明PDGF和IL-1α刺激hSVSMCs可增加SMILR的表达,增加细胞增殖,可能与近端基因HAS2的调节能力有关,确定了SMILR是血管平滑肌细胞增殖的驱动因素 [65] 。另一项研究表明SMILR可直接调节有丝分裂晚期蛋白CENPF (着丝粒蛋白F) mRNA与Staufen1 RNA结合蛋白的相互作用,促进增殖,并驱动细胞周期进程,靶向限制血管重构,证实SMILR是血管平滑肌细胞增殖的关键介质 [66] 。但目前SMILR在PH中的研究仍十分有限,未来需要更多的研究去证实其在PH中的作用。

4.2.7. Long Intergenic Noncoding RNA COX2 (lincRNA-COX2)

lincRNA-Cox2位于蛋白编码基因Cox2 (也称Ptgs2)上游51 kb处,是调节炎症反应的关键组成部分 [67] ;在CD11c+骨髓源性的树突状细胞中,Tlr4刺激后lincRNA-Cox2表达增加近1000倍,可结合NF-κB p65并促进其核易位和转录,调节炎症小体传感器NLRP3和ASC的表达 [68] 。最近的一项研究表明,在PH患者的外周血和缺氧的PASMCs中,lincRNA-COX2表达上调 [69] ;进一步的功能研究表明,在缺氧条件下,下调lincRNA-COX2通过影响细胞周期的G2/M期抑制缺氧PASMCs的增殖及迁移;该研究还发现lincRNA-COX2通过miR-let-7a/STAT3信号轴调控PH的发展 [69] 。这些发现提示lincRNA-COX2在PH的发生中具有重要作用。

4.2.8. lncRNA-Ang362 (lnc-Ang362)

Leung A等人 [70] 用Ang II处理大鼠血管平滑肌3小时后进行RNA测序,检测到多个lncRNA上调,其中包括lnc-Ang362,邻近基因miR-221和miR-222。以往的研究显示miR-221和miR-222在PH患者和SU-5416/hypoxia大鼠PH模型的PASMCs中显著上调,促进PASMCs增殖增加、凋亡减少,从而触发PH [71] 。最近的一项研究显示,肺动脉高压患者肺组织及缺氧PASMCs中lnc-Ang362、miR-221、miR-222均明显升高且促进人肺动脉平滑肌细胞(hPASMCs)增殖和迁移,减少细胞凋亡 [72] ;miR-221或miR-222的敲低可抑制hPASMCs增殖、迁移和凋亡;进一步的机制研究显示lnc-Ang362可上调hPASMCs中miR-221和miR-222的表达,进而激活NFκB信号通路,调控hPASMCs生物学功能 [72] 。因此,Lnc-Ang362可作为一种新的治疗PH的候选lncRNA。

4.2.9. lncRNA PAXIP1-AS1

PAXIP1-AS1亦是新发现的lncRNA之一,目前其生物学功能研究有限。在一项小样本的研究中发现PAXIP1-AS1在IPAH患者的肺小动脉、血管外膜成纤维细胞和PASMCs中表达上调;而下调PAXIP1-AS1可通过靶向其下游的paxillin蛋白促进细胞凋亡、抑制PASMCs增殖和迁移 [73] 。然而,从这项研究来看,尚不清楚PAXIP1-AS1是否在疾病发展中起作用,还是仅仅作为重塑过程的结果。Song R等 [74] 亦发现PAXIP1-AS1的表达在大鼠MCT-PH模型肺组织(体内实验)和缺氧的PASMCs中(体外实验)均显著升高,下调PAXIP1-AS1可抑制缺氧诱导的hPASMCs细胞活力和迁移。该研究通过双荧光素酶报告基因法、共免疫沉淀法、RIP和CHIP法发现PAXIP1-AS1通过募集转录因子ETS1与WIPF1/RhoA形成复合体,调节WIPF1/RhoA信号通路,促进缺氧诱导的hPASMCs的细胞活力和迁移 [74] 。

4.2.10. lncRNA AC068039.4

Qin Y等人 [75] 通过芯片分析低氧和常氧条件下PASMCs差异表达的lncRNA,发现共有1211个lncRNA (其中698个上调,513个下调)在缺氧的PASMCs中表达有明显差异。后经qPCR证实AC068039.4在缺氧诱导的PASMCs中明显上调;敲除AC068039.4可减轻PASMCs的增殖和迁移,并通过抑制细胞进入G0/G1期来调节细胞周期进程。进一步实验表明AC068039.4通过海绵作用miR-26-5p促进缺氧PASMCs的增殖,且证实瞬时受体电位规范6 (transient receptor potential canonical 6, TRPC6)是miR-26a-5p的靶基因。因此,lncRNA AC068039.4下调可通过miR-26a-5p/TRPC6轴抑制肺血管重构,为低氧性肺动脉高压的治疗提供了新的思路。

4.2.11. LINC00963

Long intergenic noncoding RNA 00963 (LINC00963)又称MetaLnc9,位于人类染色体9q34.11,全长约2.1 kb,自2014年首次报道以来 [76] ,发现LINC00963可在16种癌症中表达上调。异常表达的LINC00963可通过PI3K/AKT信号通路、Wnt信号通路、MAPK信号通路中发挥调控作用,调节细胞增殖、迁移、侵袭、EMT和凋亡等多种细胞过程发挥致癌作用 [77] 。LINC00963通过竞争性结合多种miRNAs,形成复杂的ceRNA网络。Yang C等 [78] 报道了缺氧的PASMCs和C57小鼠HPH模型中LINC00963、PFN1高表达,miR-328-3p低表达,转染si-LINC00963或miR-328-3p类似物可显著抑制缺氧诱导的PASMCs活力、迁移及VEGF、FGF-2和HIF-α的表达,该研究发现沉默LINC00963可通过调节miR-328-3p/PFN1改善低氧性PH [78] 。

4.2.12. lncRNA plasmacytoma variant translocation 1(lncRNA PVT1)

lncRNA浆细胞瘤变异体易位1 (PVT1)由位于癌症相关区域的基因编码:小鼠为15号染色体(qD1)长臂,人类为8号染色体(8q24)长臂。人类PVT1基因组位点位于原癌基因MYC下游54 kb处。1992年,Huppi K等人 [79] 首次发现PVT1转录本在小鼠B淋巴细胞瘤中伴随着染色体易位和扩增。以往的研究显示MYC的致癌功能依赖于PVT1的表达,这两个基因有一定的相互作用,协同驱动肿瘤发生 [80] 。PVT1位点包含至少12个外显子,具有多个可选剪接的非编码转录物,在不同人体组织中表现出显著的差异表达:心脏和肾上腺的表达水平最高,在白细胞和淋巴结的表达水平最低。已证明PVT1在癌症和其他疾病中起着至关重要的作用。最近的研究还发现缺氧可致PVT1上调,进而通过miR-186/Srf/Ctgf和miR-26b/Ctgf信号通路调节缺氧诱导的PASMCs自噬,从而加重肺动脉平滑肌细胞增殖 [81] 。

4.2.13. lncRNA Nuclear Paraspeckle Assembly Transcript 1 (lncRNA NEAT1)

核旁斑组装转录本1 (NEAT1)转录自家族性肿瘤综合征多发性内分泌肿瘤1型位点,该基因可编码两个转录本,即NEAT1-1 (长度3.7 kb)和NEAT1-2 (长度23 kb) [82] 。NEAT1是一个重要的核成分,参与多种病理生理过程,下调可导致旁斑分解。尽管核旁斑的确切功能尚不清楚,但它们与黄体和乳腺的发育以及髓样分化有关。NEAT1在肺癌、食管癌和胃癌等多种恶性肿瘤中上调,但在急性早幼粒细胞白血病中下调 [82] 。NEAT1过表达可促进肿瘤进展、加重炎症反应、哮喘和慢性阻塞性肺疾病患者的肺功能下降。近年亦有报道NEAT1在肺动脉高压患者的血清中显著升高,在缺氧处理的hPASMCs中也显著增加,采用sh-NEAT1-1/-2敲低NEAT1可明显改善缺氧引起的hPASMCs增殖和迁移,明显降低缺氧诱导的增殖相关蛋白PCNA升高,且证明下调NEAT1可通过体外调节miR-34a-5p/KLF4改善缺氧所致肺动脉平滑肌细胞的迁移和增殖 [83] 。由此可见,NEAT1可能作为潜在新的治疗靶点。

4.3. 肺动脉高压PASMCs中下调的lncRNA

4.3.1. lncRNA LnRPT

lncRNA LnRPT是Chen J等 [38] 在PDGF-BB处理12小时的大鼠PASMCs (rPASMCs) RNA测序中鉴定出表达下调且抑制PASMCs增殖的lncRNA。另外,在MCT所致PH大鼠模型的体内实验中也发现LnRPT在该模型大鼠肺动脉中表达下调 [38] 。经PDGF-BB和TGF-β刺激PASMCs后,通过PI3K下调LnRPT,可致细胞周期蛋白CCNA2表达升高和Notch信号通路激活,从而使PASMC增殖增加 [38] 。这是首次关于PDGF-PI3K-LnRPT-Notch3信号轴在调节PASMCs增殖中起重要作用的报道。然而PI3K如何影响LnRPT的表达目前尚未可知。

4.3.2. lncRNA Cancer Susceptibility Candidate 2 (CASC2)

癌症易感候选物2 (CASC2)是一种肿瘤因子,因其可从不同机制影响细胞的增殖、分化的作用,近年来广泛受到肿瘤研究领域的关注 [84] 。Gong [85] 等人在缺氧诱导的PH大鼠肺动脉、hPASMCs中发现,CASC2的表达水平显著降低。体内外实验证明,CASC2的过表达可通过抑制细胞增殖、迁移,改善大鼠缺氧诱导的PH模型中平均肺动脉压降低、右心室肥大、肺血管壁增厚和纤维化等病理特征,但其抑制细胞增殖的分子机制尚需进一步探究。2020年,Han Y [86] 等人在缺氧诱导的hPASMC及30例PH患者的血清中也同样发现CASC2呈下调趋势,并且CASC2通过调节miR-222/ING5信号轴抑制肺血管重塑,从而改善缺氧诱导的hPASMCs增殖和迁移,该研究为缺氧诱导的PH提供了新的见解和治疗策略,血清CASC2有望成为肺动脉高压早期诊断的生物标志物。

4.3.3. lncRNA Pulmonary Arterial Hypertension Related Factor (lncRNA PAHRF)

肺动脉高压相关因子(PAHRF)位于人类基因组第14号染色体上,又称为NONHSAT169231.1,研究表明,PAHRF在PH患者的肺动脉和缺氧的hPASMCs中均下调,而PAHRF过表达抑制hPASMCs细胞增殖,促进细胞凋亡;反之亦然。进一步的机制研究表明,PAHRF表达下调可通过减少内源性吸附miR-23a-3p,通过下调MST1表达刺激hPASMCs增殖,抑制其凋亡,从而促进低氧性肺动脉高压的肺血管重构 [87] 。因此,PAHRF/miR-23a-3p/MST1信号轴可能通过改善肺血管重构成为治疗PH的可能靶点。

4.3.4. lncRNA Growth Arrest-Specific Transcript 5 (GAS5)

生长停滞特异性转录本5 (GAS5)位于染色体1q25位点,全长630个核苷酸,最初在生长停滞的细胞中被发现,作为糖皮质激素受体(GR)的诱饵反应元件,阻断激活GR的基因表达上调 [88] 。已发现GAS5在胃癌、胰腺癌、结直肠癌和食管癌等多种人类癌症中下调,发挥肿瘤抑制作用 [89] [90] 。据报道,GAS5通过RNA Smad结合元件调节TGF-β诱导的平滑肌细胞分化,抑制平滑肌细胞收缩蛋白的表达 [91] 。最近在缺氧诱导的SD大鼠PH模型和缺氧处理的hPASMCs中发现GAS5表达水平较低 [92] ,用siRNA下调GAS5表达可促进体外hPASMCs的增殖与迁移。此外,GAS5可结合miR-23b-3p,缓解miR-23b-3p对KCNK3的抑制作用,从而增加KCNK3的表达,通过GAS5/miR-23b-3p/KCNK3信号轴调控hPASMCs增殖和迁移 [92] 。

慢性血栓栓塞性肺动脉高压(chronic thromboembolic pulmonary hypertension, CTEPH)是肺动脉高压(PH)的主要原因之一。在PDGF-BB处理PASMCs的细胞CTEPH模型中也发现GAS5的表达下调,GAS5通过靶向miR-382-3p不仅抑制PAMSCs的活力和迁移,还可抑制CTEPH大鼠的平均肺动脉压,抑制肺动脉壁增厚和血管生成,并促进自噬 [93] 。然而GAS5在哺乳动物中或体内研究较少。

4.3.5. lncRNA Ribosomal Protein S4-Like (RPS4L)

Liu等人 [94] 采用高通量 RNA-Seq分析鉴定缺氧小鼠的肺动脉中与PH相关的lncRNAs,鉴定出19种差异lnc RNA,其中9个上调,10个下调,lncRNA RPS4L是缺氧下调中最显著的lncRNA之一,并在缺氧的PASMCs中也验证了这一点。RPS4L主要定位于细胞核,可通过白介素增强结合因子3 (interleukin enhancer-binding factor 3, ILF3)调控缺氧诱导因子1 (HIF-1α)介导的PASMCs细胞增殖、迁移和细胞周期进程等功能。而转基因小鼠过表达RPS4L可减轻缺氧引起的小鼠右心室收缩压(RVSP)和右心室肥厚指数(RV/(LV + S))的增强,减轻肺血管重构,抑制PASMCs细胞周期进程。体内体外实验均证明了缺氧的PASMCs中RPS4L表达降低可通过ILF3/HIF-1α信号通路促进肺血管重构和细胞周期进程。尽管这些发现使缺氧诱导PH的发病机制更加完善,为研究新的治疗方法提供了重要依据,但该动物模型不能完美、全面地模拟人类PH的病理特征,还需在不同的动物模型(如MCT模型、缺氧 + SU5416模型等)及PH患者的组织和细胞中进一步研究。

同一研究小组在另一项研究中发现,缺氧PASMCs中的RPS4L可编码一条新肽,称为RPS4XL (RPS4X isoform-like) [95] ,该肽在缺氧诱导的PH小鼠模型和缺氧PASMCs中下调,通过抑制其结合蛋白RPS6磷酸化来抑制缺氧引起的PASMCs增殖,提示该肽在低氧性PH中发挥作用。此外,RPS4L过表达可抑制缺氧诱导的PASMCs焦亡 [96] ,RPS4L过表达亦引起RPS4XL表达增加,而编码肽RPS4XL通过结合HSC70糖基化位点抑制缺氧诱导的PASMCs细胞焦亡,从而改善血管重构 [96] 。

4.3.6. lncRNA TCONS-00034812

根据NCBI数据库,lncRNA TCONS-00034812位于大鼠12号染色体上。凋亡抑制是PASMCs发病的主要原因,可直接导致细胞增殖失调。与常氧大鼠相比,低氧PH大鼠PASMCs中TCONS-00034812的表达显著下调 [97] 。TCONS-00034812负调控转录因子STOX1 (storkhead box transcription factor 1)的表达,当TCONS-00034812被敲低时,STOX1上调,进而通过MAPK信号通路促进PASMCs的增殖和抑制凋亡 [97] 。这是首次报道TCONS-00034812这个新的lncRNA参与低氧性肺动脉高压血管重构的发生机制,进一步丰富了lncRNA功能在PH研究领域的认识。另一项研究还显示,TCONS-00034812在动脉粥样硬化患者的动脉样本中明显上调,并通过血管平滑肌细胞中的甲基化上调miR-21,从而促进人主动脉平滑肌细胞(HAOSMCs)增殖 [98] 。

4.3.7. lncRNA Antisense Noncoding RNA in the INK4 Locus (ANRIL)

lncRNA ANRIL是在黑色素瘤–神经系统肿瘤综合征家族的研究中首次被发现和命名。是长约126 kbp的lncRNA,定位于染色体9p21区域的INK4位点上,含19个外显子。先前的一项研究显示,ANRIL与约40%的肿瘤有关,且在心血管疾病、肿瘤和糖尿病等多种疾病中调节细胞增殖、迁移和细胞周期进程 [99] 。近来关于ANRIL的研究发现其可加速动脉粥样硬化的发展,是冠心病的危险因素 [100] 。ANRIL的异常表达不仅与血管内皮损伤有关,还参与血管平滑肌细胞的增殖、迁移和凋亡、竞争内源性RNA等。此外,Wang S等人 [101] 还发现在缺氧诱导的hPASMCs中明显下调,用siRNA抑制ANRIL可明显增加缺氧条件下G2/M+S期细胞百分比,促进细胞增殖和迁移能力,且细胞增殖标志物PCNA和Ki-67的表达也明显增加。提示ANRIL是缺氧诱导的hPASMCs的关键调节因子,对PH的靶向治疗具有深远意义。然而,缺氧介导的ANRIL下调在PH发病过程中参与细胞功能改变和肺血管重构的具体分子机制还有待进一步研究。

4.3.8. lncPTSR

根据5’/3’ RACE获得的lncPTSR全长,lncPTSR是哺乳动物中高度保守的lncRNA,位于Rattus norvegicus鼠13号染色体plasma membrane Ca2+ transporting 4 (PMCA4)基因上游,定位于细胞核。通过qPCR验证lncPTSR在野生型Sprague Dawley大鼠各器官中的转录本量,结果显示lncPTSR在肺动脉、肺和脑中高表达;而在PDGF-BB刺激或缺氧诱导的PASMCs中明显降低 [102] ;使用si-RNA介导的lncPTSR基因敲低可促进大鼠PASMCs增殖、迁移和凋亡。体内实验发现,注射AAV9-shRNAs敲低lncPTSR的大鼠经持续低氧3周后,常氧饲养的大鼠较低氧诱导的肺血管重构和右心室收缩压显著加重,大鼠PASMCs中PMCA4的mRNA和蛋白表达均减弱,大鼠肺动脉中的[Ca2+]i升高,减弱了PASMCs内Ca2+外排。该研究表明,lncPTSR通过调节PDGF-BB驱动的MAPK/胞外信号调节的激酶信号下游的质膜ATP酶钙转运体4 (ATPase plasma membrane Ca2+ transporting 4, PMCA4)表达和细胞内Ca2+稳态参与肺动脉重塑 [102] 。

4.3.9. LincRNA-p21

2014年Wu G等 [103] 发表在Circulation的一项研究中显示,lincRNA-p21在动脉粥样硬化斑块中表达降低,并发现lincRNA-p21在体外培养的人血管平滑肌细胞(VSMCs)中抑制细胞增殖并诱导细胞凋亡,且通过p53途径调节细胞增殖和凋亡。最近另一项研究还发现p53依赖性lincRNA-p21可通过microRNA-17-5p上调SIRT7抑制动脉粥样硬化血管平滑肌细胞增殖,抑制动脉粥样硬化的进展 [104] 。以往研究说明,lincRNA-p21是血管细胞增殖和凋亡的关键调节因子,而血管细胞增殖和凋亡是血管重塑的主要贡献者,因此推测lincRNA-p21在其他心血管疾病如肺动脉高压中也可发挥作用,具有较大的研究前景。

4.4. 其他与内皮功能障碍相关的lncRNA

Leisegang MS等人 [105] 在通过外显子测序检测去除组蛋白去甲基化酶(JARID1B)的人脐静脉内皮细胞(HUVEC)差异表达的lncRNA时,发现了lncRNA MANTIS (又称n342419),是一种受JARIDlB抑制的核定位lncRNA,在染色质调节方面发挥重要作用。特发性肺动脉高压(IPAH)患者和大鼠IPAH疾病模型(MCT诱导的PH)中MANTIS表达明显减少。MANTIS可与SWI/SNF催化亚基BRG1相互作用,并调节SOX18、SMAD6和COUP-TFII蛋白表达,这些基因都参与血管生成调节。通过CRISPR/Cas9介导的小干扰RNA或GapmeRs等技术对MANTIS进行功能性沉默后观察血管生成、出芽、内皮细胞对剪切应力的反应和ECs迁移能力均显著抑制。此外,MANTIS在主动脉、淋巴管、肺动脉内皮细胞中也表达,从不同动脉、成纤维细胞、MCF-7细胞中分离的人平滑肌细胞中也可检测到MANTIS [105] 。

亚精胺(Spermidine,SP)可作为多种细胞中的自噬诱导剂,Wu Q等人 [106] 在SP诱导的慢性血栓栓塞性肺动脉高压(CTEPH)患者肺动脉内皮细胞(PAECs)及大鼠CTEPH模型的PAECs中发现GAS5表达明显增强,并作为PAECs中的自噬增强子,GAS5可通过靶向miRNA-31-5p/NAT8L信号通路促进PAECs中SP诱导的自噬。

5. lncRNA在PH治疗中的应用和面临的挑战

目前,肺动脉高压仍然是一种高发病率和死亡率的疾病。因此,要成功治疗这种疾病,深入了解PH发生发展的所有分子机制是必不可少的。在过去的几年中,越来越多的证据表明lncRNAs在PH的发病机制中发挥关键作用。因此,深入了解它们的功能和作用机制对于开发新的有效治疗方法至关重要。已发现lncRNA MALAT1基因组序列的单核苷酸多态性(rs619586 A > G)与中国人群PH发病低风险有关 [54] 。据报道,由于这种多态性,miR-214海绵位点暴露使XBP1表达上调 [54] 从而促进PH的发生。

lncRNA的表达具有高度的细胞和组织特异性,针对lncRNA的治疗将是一种非常有潜力的个性化治疗的方法。例如,在H19基因启动子的调控下将含有白喉毒素基因的双链DNA质粒BC-819靶向注射到小鼠膀胱肿瘤中,可使肿瘤体积减小 [107] 。BC-819与Bacilli Calmette Guerin (BCG)的联合使用可显著改善患者预后,在非肌肉浸润性膀胱癌患者2期临床试验的24个月中,无复发生存率为54.1%,无进展生存率为75.7% [108] 。这表明基于lncRNA的治疗具有很好的前景。

然而目前为止,还没有针对PH中lncRNA的临床试验,主要是因为lncRNA的基础研究还存在诸多困难需要解决。例如,lncRNA在物种间的保守性较差,目前的机制研究多在动物疾病模型中开展,若要开发用于人类lncRNA的新药较为困难。第二,目前在该领域的大多数研究都集中在预先选择的lncRNA,而不是鉴定在PH发病机制中最重要的特定lncRNA。第三,有些lncRNA虽然在体外和体内PH研究中显示出良好的治疗潜力,然而在临床研究中,由于lncRNA可能对不同细胞和组织类型的多种通路产生影响,若使用lncRNA治疗疾病还需反复验证,小心谨慎。第四,在相同的lncRNA中可能存在多个miRNA的结合位点,但大多数研究只关注单个lncRNA和单个miRNA的相互作用,而没有关注lncRNA的整体效应。第五,从基础研究到成功转化为临床应用还须提高RNA药物在循环中的稳定性、确定适当的递送途径、提高递送系统的效率和持续时间、限制脱靶效应以及调整患者特异性剂量等等 [109] 。因此,探寻lncRNAs在PH的发病机制中的作用、作为生物标志物和临床用药还有很长的路要走。

6. 小结

综上所述,lncRNAs在肺血管重构和肺动脉高压的许多生物过程中发挥重要作用。失调的lncRNAs可致PASMCs功能失调,如细胞增殖、凋亡、迁移、表型转换调控、细胞周期等,促使PH的发生和发展。lncRNA的作用机制非常复杂,在血管平滑肌细胞中可通过与miRNA竞争结合mRNA靶基因发挥作用,

Figure 1. lncRNA involved in the development of pulmonary hypertension by regulating PASMCs and promoting pulmonary vascular remodeling (drawn by Figdraw)

图1. lncRNA通过调节PASMCs促进肺血管重构参与肺动脉高压的发生发展本图由Figdraw绘制

也可直接作用于靶蛋白来发挥作用(见图1),还需深入挖掘其参与PH的机制。反义寡核苷酸、RNA干扰药物和CRISPR基因组编辑工具通过改变lncRNA表达也可作为PH治疗的手段之一。鉴于lncRNAs在血液循环中表达稳定,便于定量检测,将来有望成为肺动脉高压诊断、治疗和预后较有潜力的生物标志物。

致谢

在此特别感谢我的导师范晓航老师,她严谨的治学态度和渊博的学识对我影响深远,笔短情长,师恩难忘!

基金项目

湖北省教育厅中青年人才项目(Q20182603);湖北文理学院大学生创新创业训练计划项目(202110519007, X202110519015, X202310519068);湖北文理学院博士科研启动经费资助项目(2059201)。

参考文献

[1] Hassoun, P.M. (2021) Pulmonary Arterial Hypertension. The New England Journal of Medicine, 385, 2361-2376.
https://doi.org/10.1056/NEJMra2000348
[2] Ruopp, N.F. and Cockrill, B.A. (2022) Diagnosis and Treatment of Pulmonary Arterial Hypertension: A Review. JAMA, 327, 1379-1391.
https://doi.org/10.1001/jama.2022.4402
[3] Han, B., Bu, P., Meng, X., et al. (2017) Microarray Profiling of Long Non-Coding RNAs Associated with Idiopathic Pulmonary Arterial Hypertension. Experimental and Therapeutic Medicine, 13, 2657-2666.
https://doi.org/10.3892/etm.2017.4355
[4] Okazaki, Y., Furuno, M., Kasukawa, T., et al. (2002) Analysis of the Mouse Transcriptome Based on Functional Annotation of 60,770 Full-Length cDNAs. Nature, 420, 563-73.
https://doi.org/10.1038/nature01266
[5] Mattick, J.S. and Makunin, I.V. (2006) Non-Coding RNA. Human Molecular Genetics, 15, R17-R29.
https://doi.org/10.1093/hmg/ddl046
[6] Han, Y., Ali, M.K., Dua, K., et al. (2021) Role of Long Non-Coding RNAs in Pulmonary Arterial Hypertension. Cell, 10, Article No. 1892.
https://doi.org/10.3390/cells10081892
[7] Mercer, T.R., Dinger, M.E. and Mattick, J.S. (2009) Long Non-Coding RNAs: Insights into Functions. Human Molecular Genetics, 10, 155-159.
https://doi.org/10.1038/nrg2521
[8] Beermann, J., Piccoli, M.T., Viereck, J., et al. (2016) Non-Coding RNAs in Development and Disease: Background, Mechanisms, and Therapeutic Approaches. Physiological Reviews, 96, 1297-1325.
https://doi.org/10.1152/physrev.00041.2015
[9] Sun, M., Nie, F., Wang, Y., et al. (2016) LncRNA HOXA11-AS Promotes Proliferation and Invasion of Gastric Cancer by Scaffolding the Chromatin Modification Factors PRC2, LSD1, and DNMT. Cancer Research, 76, 6299-6310.
https://doi.org/10.1158/0008-5472.CAN-16-0356
[10] Gasri-Plotnitsky, L., Ovadia, A., Shamalov, K., et al. (2017) A Novel lncRNA, GASL1, Inhibits Cell Proliferation and Restricts E2F1 Activity. Oncotarget, 8, 23775-23786.
https://doi.org/10.18632/oncotarget.15864
[11] Peng, W.X., Koirala, P. and Mo, Y.Y. (2017) LncRNA-Mediated Regulation of Cell Signaling in Cancer. Oncogene, 36, 5661-5667.
https://doi.org/10.1038/onc.2017.184
[12] Leeper, N.J. and Maegdefessel, L. (2018) Non-Coding RNAs: Key Regulators of Smooth Muscle Cell Fate in Vascular Disease. Cardiovascular Research, 114, 611-621.
https://doi.org/10.1093/cvr/cvx249
[13] Haemmig, S., Simion, V. and Feinberg, M.W. (2018) Long Non-Coding RNAs in Vascular Inflammation. Frontiers in Cardiovascular Medicine, 5, Article No. 22.
https://doi.org/10.3389/fcvm.2018.00022
[14] Leimena, C. and Qiu, H. (2018) Non-Coding RNA in the Pathogenesis, Progression and Treatment of Hypertension. International Journal of Molecular Sciences, 19, Article No. 927.
https://doi.org/10.3390/ijms19040927
[15] Chi, Y., Wang, D., Wang, J., et al. (2019) Long Non-Coding RNA in the Pathogenesis of Cancers. Cells, 8, Article No. 1015.
https://doi.org/10.3390/cells8091015
[16] Simion, V., Haemmig, S. and Feinberg, M.W. (2019) LncRNAs in Vascular Biology and Disease. Vascular Pharmacology, 114, 145-156.
https://doi.org/10.1016/j.vph.2018.01.003
[17] Wolowiec, L., Medlewska, M., Osiak, J., et al. (2023) MicroRNA and lncRNA as the Future of Pulmonary Arterial Hypertension Treatment. International Journal of Molecular Sciences, 24, Article No. 9735.
https://doi.org/10.3390/ijms24119735
[18] WKovacs, G., Dumitrescu, D., Barner, A., et al. (2018) Definition, Clinical Classification and Initial Diagnosis of Pulmonary Hypertension: Updated Recommendations from the Cologne Consensus Conference 2018. International Journal of Cardiology, 272S, 11-19.
https://doi.org/10.1016/j.ijcard.2018.08.083
[19] Vaillancourt, M., Ruffenach, G., Meloche, J., et al. (2015) Adaptation and Remodelling of the Pulmonary Circulation in Pulmonary Hypertension. Canadian Journal of Cardiology, 31, 407-415.
https://doi.org/10.1016/j.cjca.2014.10.023
[20] Sommer, N., Ghofrani, H.A., Pak, O., et al. (2021) Current and Future Treatments of Pulmonary Arterial Hypertension. British Journal of Pharmacology, 178, 6-30.
https://doi.org/10.1111/bph.15016
[21] Leopold, J.A. and Maron, B.A. (2016) Molecular Mechanisms of Pulmonary Vascular Remodeling in Pulmonary Arterial Hypertension. International Journal of Molecular Sciences, 17, Article No. 761.
https://doi.org/10.3390/ijms17050761
[22] Price, L.C., Wort, S.J., Perros, F., et al. (2012) Inflammation in Pulmonary Arterial Hypertension. Chest, 141, 210-221.
https://doi.org/10.1378/chest.11-0793
[23] Nogueira-Ferreira, R., Vitorino, R., Ferreira, R., et al. (2015) Exploring the Monocrotaline Animal Model for the Study of Pulmonary Arterial Hypertension: A Network Approach. Pulmonary Pharmacology & Therapeutics, 35, 8-16.
https://doi.org/10.1016/j.pupt.2015.09.007
[24] Rieg, A.D., Suleiman, S., Anker, C., et al. (2018) PDGF-BB Regulates the Pulmonary Vascular Tone: Impact of Prostaglandins, Calcium, MAPK- and PI3K/AKT/mTOR Signalling and Actin Polymerisation in Pulmonary Veins of Guinea Pigs. Respiratory Research, 19, Article No. 120.
https://doi.org/10.1186/s12931-018-0829-5
[25] Qian, Z., Li, Y., Chen, J., et al. (2017) miR-4632 Mediates PDGF-BB-Induced Proliferation and Antiapoptosis of Human Pulmonary Artery Smooth Muscle Cells via Targeting cJUN. American Journal of Physiology-Cell Physiology, 313, C380-C391.
https://doi.org/10.1152/ajpcell.00061.2017
[26] Tan, W.S.D., Liao, W., Zhou, S., et al. (2018) Targeting the Renin-Angiotensin System as Novel Therapeutic Strategy for Pulmonary Diseases. Current Opinion in Pharmacology, 40, 9-17.
https://doi.org/10.1016/j.coph.2017.12.002
[27] Viswanathan, G., Mamazhakypov, A., Schermuly, R.T., et al. (2018) The Role of G Protein-Coupled Receptors in the Right Ventricle in Pulmonary Hypertension. Frontiers in Cardiovascular Medicine, 5, Article No. 179.
https://doi.org/10.3389/fcvm.2018.00179
[28] De Man, F.S., Tu, L., Handoko, M.L., et al. (2012) Dysregulated Renin-Angiotensin-Aldosterone System Contributes to Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 186, 780-790.
https://doi.org/10.1164/rccm.201203-0411OC
[29] Gupta, V.S. and Harting, M.T. (2020) Congenital Diaphragmatic Hernia-Associated Pulmonary Hypertension. Seminars in Perinatology, 44, Article ID: 151167.
https://doi.org/10.1053/j.semperi.2019.07.006
[30] Longoni, M., Russell, M.K., High, F.A., et al. (2015) Prevalence and Penetrance of ZFPM2 Mutations and Deletions Causing Congenital Diaphragmatic Hernia. Clinical Genetics, 87, 362-367.
https://doi.org/10.1111/cge.12395
[31] McCulley, D.J., Wienhold, M.D., Hines, E.A., et al. (2018) PBX Transcription Factors Drive Pulmonary Vascular Adaptation to Birth. Journal of Clinical Investigation, 128, 655-667.
https://doi.org/10.1172/JCI93395
[32] Cao, Y., Yang, Y., Wang, L., et al. (2018) Analyses of Long Non-Coding RNA and mRNA Profiles in Right Ventricle Myocardium of Acute Right Heart Failure in Pulmonary Arterial Hypertension Rats. Biomedicine & Pharmacotherapy, 106, 1108-1115.
https://doi.org/10.1016/j.biopha.2018.07.057
[33] Zahid, K.R., Raza, U., Chen, J., et al. (2020) Pathobiology of Pulmonary Artery Hypertension: Role of Long Non-Coding RNAs. Cardiovascular Research, 116, 1937-1947.
https://doi.org/10.1093/cvr/cvaa050
[34] Awad, K.S., West, J.D., de Jesus Perez, V., et al. (2016) Novel Signaling Pathways in Pulmonary Arterial Hypertension (2015 Grover Conference Series). Pulmonary Circulation, 6, 285-294.
https://doi.org/10.1086/688034
[35] Wilson, J.L., Yu, J., Taylor, L., et al. (2015) Hyperplastic Growth of Pulmonary Artery Smooth Muscle Cells from Subjects with Pulmonary Arterial Hypertension Is Activated through JNK and p38 MAPK. PLOS ONE, 14, e0123662.
https://doi.org/10.1371/journal.pone.0123662
[36] Wang, J., Feng, W., Li, F., et al. (2019) SphK1/S1P Mediates TGF-β1-Induced Proliferation of Pulmonary Artery Smooth Muscle Cells and Its Potential Mechanisms. Pulmonary Circulation, 9, 1-8.
https://doi.org/10.1177/2045894018816977
[37] Wang, D., Xu, H., Wu, B., et al. (2019) Long Non‑Coding RNA MALAT1 Sponges miR‑124‑3p.1/KLF5 to Promote Pulmonary Vascular Remodeling and Cell Cycle Progression of Pulmonary Artery Hypertension. International Journal of Molecular Medicine, 44, 871-884.
https://doi.org/10.3892/ijmm.2019.4256
[38] Chen, J., Guo, J., Cui, X., et al. (2018) The Long Noncoding RNA LnRPT Is Regulated by PDGF-BB and Modulates the Proliferation of Pulmonary Artery Smooth Muscle Cells. American Journal of Respiratory Cell and Molecular Biology, 58, 181-193.
https://doi.org/10.1165/rcmb.2017-0111OC
[39] Juan, V., Crain, C. and Wilson, C. (2000) Evidence for Evolutionarily Conserved Secondary Structure in the H19 Tumor Suppressor RNA. Nucleic Acids Research, 28, 1221-1227.
https://doi.org/10.1093/nar/28.5.1221
[40] Cai, X. and Cullen, B.R. (2007) The Imprinted H19 Noncoding RNA Is a Primary microRNA Precursor. RNA, 13, 313-316.
https://doi.org/10.1261/rna.351707
[41] Huang, S.F., Zhao, G., Peng, X.F., et al. (2021) The Pathogenic Role of Long Non-Coding RNA H19 in Atherosclerosis via the miR-146a-5p/ANGPTL4 Pathway. Frontiers in Cardiovascular Medicine, 8, Article ID: 770163.
https://doi.org/10.3389/fcvm.2021.770163
[42] Pan, J.X. (2017) LncRNA H19 Promotes Atherosclerosis by Regulating MAPK and NF-kB Signaling Pathway. European Review for Medical and Pharmacological Sciences, 21, 322-328.
[43] Kallen, A.N., Zhou, X.B., Xu, J., et al. (2013) The Imprinted H19 lncRNA Antagonizes let-7 microRNAs. Molecular Cell, 52, 101-112.
https://doi.org/10.1016/j.molcel.2013.08.027
[44] Su, H., Xu, X., Yan, C., et al. (2018) LncRNA H19 Promotes the Proliferation of Pulmonary Artery Smooth Muscle Cells through AT1R via Sponging let-7b in Monocrotaline-Induced Pulmonary Arterial Hypertension. Respiratory Research, 19, Article No. 254.
https://doi.org/10.1186/s12931-018-0956-z
[45] Wang, R., Zhou, S., Wu, P., et al. (2018) Identifying Involvement of H19-miR-675-3p-IGF1R and H19-miR-200a-PDCD4 in Treating Pulmonary Hypertension with Melatonin. Molecular Therapy Nucleic Acids, 13, 44-54.
https://doi.org/10.1016/j.omtn.2018.08.015
[46] Omura, J., Habbout, K., Shimauchi, T., et al. (2020) Identification of Long Noncoding RNA H19 as a New Biomarker and Therapeutic Target in Right Ventricular Failure in Pulmonary Arterial Hypertension. Circulation, 142, 1464-1484.
https://doi.org/10.1161/CIRCULATIONAHA.120.047626
[47] Yang, L., Liang, H., Shen, L., et al. (2019) LncRNA Tug1 Involves in the Pulmonary Vascular Remodeling in Mice with Hypoxic Pulmonary Hypertension via the microRNA-374c-Mediated Foxc1. Life Sciences, 237, Article ID: 116769.
https://doi.org/10.1016/j.lfs.2019.116769
[48] Zhang, H., Liu, Y., Yan, L., et al. (2019) Long Noncoding RNA Hoxaas3 Contributes to Hypoxia-Induced Pulmonary Artery Smooth Muscle Cell Proliferation. Cardiovascular Research, 115, 647-657.
https://doi.org/10.1093/cvr/cvy250
[49] Sun, Z., Nie, X., Sun, S., et al. (2017) Long Non-Coding RNA MEG3 Downregulation Triggers Human Pulmonary Artery Smooth Muscle Cell Proliferation and Migration via the p53 Signaling Pathway. Cellular Physiology and Biochemistry, 42, 2569-2581.
https://doi.org/10.1159/000480218
[50] Zhu, B., Gong, Y., Yan, G., et al. (2018) Down-Regulation of lncRNA MEG3 Promotes Hypoxia-Induced Human Pulmonary Artery Smooth Muscle Cell Proliferation and Migration via Repressing PTEN by Sponging miR-21. Biochemical and Biophysical Research Communications, 495, 2125-2132.
https://doi.org/10.1016/j.bbrc.2017.11.185
[51] Xing, Y., Zheng, X., Fu, Y., et al. (2019) Long Noncoding RNA-Maternally Expressed Gene 3 Contributes to Hypoxic Pulmonary Hypertension. Molecular Therapy, 27, 2166-2181.
https://doi.org/10.1016/j.ymthe.2019.07.022
[52] Zhang, X., Hamblin, M.H. and Yin, K.J. (2017) The Long Noncoding RNA Malat1: Its Physiological and Pathophysiological Functions. RNA Biology, 14, 1705-1714.
https://doi.org/10.1080/15476286.2017.1358347
[53] Brock, M., Schuoler, C., Leuenberger, C., et al. (2017) Analysis of Hypoxia-Induced Noncoding RNAs Reveals Metastasis-Associated Lung Adenocarcinoma Transcript 1 as an Important Regulator of Vascular Smooth Muscle Cell Proliferation. Experimental Biology and Medicine (Maywood), 242, 487-496.
https://doi.org/10.1177/1535370216685434
[54] Zhuo, Y., Zeng, Q., Zhang, P., et al. (2017) Functional Polymorphism of lncRNA MALAT1 Contributes to Pulmonary Arterial Hypertension Susceptibility in Chinese People. Clinical Chemistry and Laboratory Medicine, 55, 38-46.
https://doi.org/10.1515/cclm-2016-0056
[55] He, M., Shen, J., Zhang, C., et al. (2020) Long-Chain Non-Coding RNA Metastasis-Related Lung Adenocarcinoma Transcript 1 (MALAT1) Promotes the Proliferation and Migration of Human Pulmonary Artery Smooth Muscle Cells (hPASMCs) by Regulating the MicroRNA-503 (miR-503)/Toll-Like Receptor 4 (TLR4) Signal Axis. Medical Science Monitor, 26, e923123.
https://doi.org/10.12659/MSM.923123
[56] Zhou, H., Sun, L. and Wan, F. (2019) Molecular Mechanisms of TUG1 in the Proliferation, Apoptosis, Migration and Invasion of Cancer Cells. Oncology Letters, 18, 4393-4402.
https://doi.org/10.3892/ol.2019.10848
[57] Wang, S., Cao, W., Gao, S., et al. (2019) TUG1 Regulates Pulmonary Arterial Smooth Muscle Cell Proliferation in Pulmonary Arterial Hypertension. Canadian Journal of Cardiology, 35, 1534-1545.
https://doi.org/10.1016/j.cjca.2019.07.630
[58] Yao, Q., Wang, C., Wang, Y., et al. (2022) The Integrated Comprehension of lncRNA HOXA-AS3 Implication on Human Diseases. Clinical and Translational Oncology, 24, 2342-2350.
https://doi.org/10.1007/s12094-022-02920-w
[59] Li, Z.K., Gao, L.F., Zhu, X.A., et al. (2021) LncRNA HOXA-AS3 Promotes the Progression of Pulmonary Arterial Hypertension through Mediation of miR-675-3p/PDE5A Axis. Biochemical Genetics, 59, 1158-1172.
https://doi.org/10.1007/s10528-021-10053-y
[60] Zehendner, C.M., Valasarajan, C., Werner, A., et al. (2020) Long Noncoding RNA TYKRIL Plays a Role in Pulmonary Hypertension via the p53-mediated Regulation of PDGFRβ. American Journal of Respiratory and Critical Care Medicine, 202, 1445-1457.
https://doi.org/10.1164/rccm.201910-2041OC
[61] Wang, F., Li, X., Xie, X., et al. (2008) UCA1, a Non-Protein-Coding RNA Up-Regulated in Bladder Carcinoma and Embryo, Influencing Cell Growth and Promoting Invasion. FEBS Letters, 582, 1919-1927.
https://doi.org/10.1016/j.febslet.2008.05.012
[62] He, A., Hu, R., Chen, Z., et al. (2017) Role of Long Noncoding RNA UCA1 as a Common Molecular Marker for Lymph Node Metastasis and Prognosis in Various Cancers: A Meta-Analysis. Oncotarget, 8, 1937-1943.
https://doi.org/10.18632/oncotarget.12463
[63] Zhu, T.T., Sun, R.L., Yin, Y.L., et al. (2019) Long Noncoding RNA UCA1 Promotes the Proliferation of Hypoxic Human Pulmonary Artery Smooth Muscle Cells. Pflügers Archiv, 471, 347-355.
https://doi.org/10.1007/s00424-018-2219-8
[64] Lei, S., Peng, F., Li, M.L., et al. (2020) LncRNA-SMILR Modulates RhoA/ROCK Signaling by Targeting miR-141 to Regulate Vascular Remodeling in Pulmonary Arterial Hypertension. The American Journal of Physiology-Heart and Circulatory Physiology, 319, H377-H391.
https://doi.org/10.1152/ajpheart.00717.2019
[65] Ballantyne, M.D., Pinel, K., Dakin, R., et al. (2016) Smooth Muscle Enriched Long Noncoding RNA (SMILR) Regulates Cell Proliferation. Circulation, 133, 2050-2065.
https://doi.org/10.1161/CIRCULATIONAHA.115.021019
[66] Mahmoud, A.D., Ballantyne, M.D., Miscianinov, V., et al. (2019) The Human-Specific and Smooth Muscle Cell-Enriched LncRNA SMILR Promotes Proliferation by Regulating Mitotic CENPF mRNA and Drives Cell-Cycle Progression Which Can Be Targeted to Limit Vascular Remodeling. Circulation Research, 125, 535-551.
https://doi.org/10.1161/CIRCRESAHA.119.314876
[67] Carpenter, S., Aiello, D., Atianand, M.K., et al. (2013) A Long Noncoding RNA Mediates both Activation and Repression of Immune Response Genes. Science, 341, 789-792.
https://doi.org/10.1126/science.1240925
[68] Xue, Z., Zhang, Z., Liu, H., et al. (2019) lincRNA-Cox2 Regulates NLRP3 Inflammasome and Autophagy Mediated Neuroinflammation. Cell Death & Differentiation, 26, 130-145.
https://doi.org/10.1038/s41418-018-0105-8
[69] Cheng, G., He, L. and Zhang, Y. (2020) LincRNA-Cox2 Promotes Pulmonary Arterial Hypertension by Regulating the let-7a-Mediated STAT3 Signaling Pathway. Molecular and Cellular Biochemistry, 475, 239-247.
https://doi.org/10.1007/s11010-020-03877-6
[70] Leung, A., Trac, C., Jin, W., et al. (2013) Novel Long Noncoding RNAs Are Regulated by Angiotensin II in Vascular Smooth Muscle Cells. Circulation Research, 113, 266-278.
https://doi.org/10.1161/CIRCRESAHA.112.300849
[71] Nie, X., Chen, Y., Tan, J., et al. (2019) MicroRNA-221-3p Promotes Pulmonary Artery Smooth Muscle Cells Proliferation by Targeting AXIN2 during Pulmonary Arterial Hypertension. Vascular Pharmacology, 116, 24-35.
https://doi.org/10.1016/j.vph.2017.07.002
[72] Wang, H., Qin, R. and Cheng, Y. (2020) LncRNA-Ang362 Promotes Pulmonary Arterial Hypertension by Regulating miR-221 and miR-222. Shock, 53, 723-729.
https://doi.org/10.1097/SHK.0000000000001410
[73] Jandl, K., Thekkekara Puthenparampil, H., Marsh, L.M., et al. (2019) Long Non-Coding RNAs Influence the Transcriptome in Pulmonary Arterial Hypertension: The Role of PAXIP1-AS1. The Journal of Pathology, 247, 357-370.
https://doi.org/10.1002/path.5195
[74] Song, R., Lei, S., Yang, S., et al. (2021) LncRNA PAXIP1-AS1 Fosters the Pathogenesis of Pulmonary Arterial Hypertension via ETS1/WIPF1/RhoA Axis. Journal of Cellular and Molecular Medicine, 25, 7321-7334.
https://doi.org/10.1111/jcmm.16761
[75] Qin, Y., Zhu, B., Li, L., et al. (2021) Overexpressed lncRNA AC068039.4 Contributes to Proliferation and Cell Cycle Progression of Pulmonary Artery Smooth Muscle Cells via Sponging miR-26a-5p/TRPC6 in Hypoxic Pulmonary Arterial Hypertension. Shock, 55, 244-255.
https://doi.org/10.1097/SHK.0000000000001606
[76] Wang, L., Han, S., Jin, G., et al. (2014) Linc00963: A Novel, Long Non-Coding RNA Involved in the Transition of Prostate Cancer from Androgen-Dependence to Androgen-Independence. International Journal of Oncology, 44, 2041-2049.
https://doi.org/10.3892/ijo.2014.2363
[77] Xie, Z., Zhong, C., Shen, J., et al. (2022) LINC00963: A Potential Cancer Diagnostic and Therapeutic Target. Biomedicine & Pharmacotherapy, 150, Article ID: 113019.
https://doi.org/10.1016/j.biopha.2022.113019
[78] Yang, C., Rong, R., Li, Y., et al. (2022) Decrease in LINC00963 Attenuates the Progression of Pulmonary Arterial Hypertension via microRNA-328-3p/Profilin 1 Axis. Journal of Clinical Laboratory Analysis, 36, e24383.
https://doi.org/10.1002/jcla.24383
[79] Huppi, K., Volfovsky, N., Runfola, T., et al. (2008) The Identification of microRNAs in a Genomically Unstable Region of Human Chromosome 8q24. Molecular Cancer Research, 6, 212-221.
https://doi.org/10.1158/1541-7786.MCR-07-0105
[80] Jin, K., Wang, S., Zhang, Y., et al. (2019) Long Non-Coding RNA PVT1 Interacts with MYC and Its Downstream Molecules to Synergistically Promote Tumorigenesis. Cellular and Molecular Life Sciences, 76, 4275-4289.
https://doi.org/10.1007/s00018-019-03222-1
[81] Xia, X., Huang, L., Zhou, S., et al. (2023) Hypoxia-Induced Long Non-Coding RNA Plasmacytoma Variant Translocation 1 Upregulation Aggravates Pulmonary Arterial Smooth Muscle Cell Proliferation by Regulating Autophagy via miR-186/Srf/Ctgf and miR-26b/Ctgf Signaling Pathways. International Journal of Cardiology, 370, 368-377.
https://doi.org/10.1016/j.ijcard.2022.09.060
[82] Yu, X., Li, Z., Zheng, H., et al. (2017) NEAT1: A Novel Cancer-Related Long Non-Coding RNA. Cell Proliferation, 50, e12329.
https://doi.org/10.1111/cpr.12329
[83] Dou, X., Ma, Y., Qin, Y., et al. (2021) NEAT1 Silencing Alleviates Pulmonary Arterial Smooth Muscle Cell Migration and Proliferation under Hypoxia through Regulation of miR‑34a‑5p/KLF4 in Vitro. Molecular Medicine Reports, 24, Article No. 749.
https://doi.org/10.3892/mmr.2021.12389
[84] Wu, Z.H., Zhou, J., Hu, G.H., et al. (2021) LncRNA CASC2 Inhibits Lung Adenocarcinoma Progression through Forming Feedback Loop with miR-21/p53 Axis. The Kaohsiung Journal of Medical Sciences, 37, 675-685.
https://doi.org/10.1002/kjm2.12386
[85] Gong, J., Chen, Z., Chen, Y., et al. (2019) Long Non-Coding RNA CASC2 Suppresses Pulmonary Artery Smooth Muscle Cell Proliferation and Phenotypic Switch in Hypoxia-Induced Pulmonary Hypertension. Respiratory Research, 20, Article No. 53.
https://doi.org/10.1186/s12931-019-1018-x
[86] Han, Y., Liu, Y., Yang, C., et al. (2020) LncRNA CASC2 Inhibits Hypoxia-Induced Pulmonary Artery Smooth Muscle Cell Proliferation and Migration by Regulating the miR-222/ING5 Axis. Cell & Molecular Bio Letters, 25, Article No. 21.
https://doi.org/10.1186/s11658-020-00215-y
[87] Liu, Y., Hu, R., Zhu, J., et al. (2021) The lncRNA PAHRF Functions as a Competing Endogenous RNA to Regulate MST1 Expression by Sponging miR-23a-3p in Pulmonary Arterial Hypertension. Vascular Pharmacology, 139, Article ID: 106886.
https://doi.org/10.1016/j.vph.2021.106886
[88] Kino, T., Hurt, D.E., Ichijo, T., Nader, N. and Chrousos, G.P. (2010) Noncoding RNA gas5 Is a Growth Arrest and Starvation-Associated Repressor of the Glucocorticoid Receptor. Science Signaling, 3, ra8.
https://doi.org/10.1126/scisignal.2000568
[89] Gao, Z.Q., Wang, J.F., Chen, D.H., et al. (2017) Long Non-Coding RNA GAS5 Suppresses Pancreatic Cancer Metastasis through Modulating miR-32-5p/PTEN Axis. Cell & Bioscience, 7, Article No. 66.
https://doi.org/10.1186/s13578-017-0192-0
[90] Li, Y., Gu, J. and Lu, H. (2017) The GAS5/miR-222 Axis Regulates Proliferation of Gastric Cancer Cells through the PTEN/Akt/mTOR Pathway. Digestive Diseases and Sciences, 62, 3426-3437.
https://doi.org/10.1007/s10620-017-4831-4
[91] Tang, R., Zhang, G., Wang, Y.C., et al. (2017) The Long Non-Coding RNA GAS5 Regulates Transforming Growth Factor β (TGF-β)-Induced Smooth Muscle Cell Differentiation via RNA Smad-Binding Elements. Journal of Biological Chemistry, 292, 14270-14278.
https://doi.org/10.1074/jbc.M117.790030
[92] Hao, X., Li, H., Zhang, P., et al. (2020) Down-Regulation of lncRNA Gas5 Promotes Hypoxia-Induced Pulmonary Arterial Smooth Muscle Cell Proliferation by Regulating KCNK3 Expression. European Journal of Pharmacology, 889, Article ID: 173618.
https://doi.org/10.1016/j.ejphar.2020.173618
[93] Feng, X., Wang, K., Yang, T., et al. (2022) LncRNA-GAS5/miR-382-3p Axis Inhibits Pulmonary Artery Remodeling and Promotes Autophagy in Chronic Thromboembolic Pulmonary Hypertension. Genes Genomics, 44, 395-404.
https://doi.org/10.1007/s13258-021-01202-z
[94] Liu, Y., Zhang, H., Li, Y., et al. (2020) Long Noncoding RNA Rps4l Mediates the Proliferation of Hypoxic Pulmonary Artery Smooth Muscle Cells. Hypertension, 76, 1124-1133.
https://doi.org/10.1161/HYPERTENSIONAHA.120.14644
[95] Li, Y., Zhang, J., Sun, H., et al. (2021) lnc-Rps4l-Encoded Peptide RPS4XL Regulates RPS6 Phosphorylation and Inhibits the Proliferation of PASMCs Caused by Hypoxia. Molecular Therapy, 29, 1411-1424.
https://doi.org/10.1016/j.ymthe.2021.01.005
[96] Li, Y., Zhang, J., Sun, H., et al. (2022) RPS4XL Encoded by lnc-Rps4l Inhibits Hypoxia-Induced Pyroptosis by Binding HSC70 Glycosylation Site. Molecular Therapy Nucleic Acids, 28, 920-934.
https://doi.org/10.1016/j.omtn.2022.05.033
[97] Liu, Y., Sun, Z., Zhu, J., et al. (2018) LncRNA-TCONS_00034812 in Cell Proliferation and Apoptosis of Pulmonary Artery Smooth Muscle Cells and Its Mechanism. Journal of Cellular Physiology, 233, 4801-4814.
https://doi.org/10.1002/jcp.26279
[98] Lin, D., Zhang, X., Zhang, C., et al. (2021) LncRNA-TCONS_00034812 Is Upregulated in Atherosclerosis and Upregulates miR-21 through Methylation in Vascular Smooth Muscle Cells. Annals of Translational Medicine, 9, 1005.
https://doi.org/10.21037/atm-21-2632
[99] Pasmant, E., Laurendeau, I., Héron, D., et al. (2007) Characterization of a Germ-Line Deletion, Including the Entire INK4/ARF Locus, in a Melanoma-Neural System Tumor Family: Identification of ANRIL, an Antisense Noncoding RNA Whose Expression Coclusters with ARF. Cancer Research, 67, 3963-3969.
https://doi.org/10.1158/0008-5472.CAN-06-2004
[100] Chen, L., Qu, H., Guo, M., et al. (2020) ANRIL and Atherosclerosis. Journal of Clinical Pharmacy and Therapeutics, 45, 240-248.
https://doi.org/10.1111/jcpt.13060
[101] Wang, S., Zhang, C. and Zhang, X. (2020) Downregulation of Long Non‑Coding RNA ANRIL Promotes Proliferation and Migration in Hypoxic Human Pulmonary Artery Smooth Muscle Cells. Molecular Medicine Reports, 21, 589-596.
https://doi.org/10.3892/mmr.2019.10887
[102] Deng, L., Chen, J., Chen, B., et al. (2022) LncPTSR Triggers Vascular Remodeling in Pulmonary Hypertension by Regulating [Ca2+]i in Pulmonary Arterial Smooth Muscle Cells. American Journal of Respiratory Cell and Molecular Biology, 66, 524-538.
https://doi.org/10.1165/rcmb.2020-0480OC
[103] Wu, G., Cai, J., Han, Y., et al. (2014) LincRNA-p21 Regulates Neointima Formation, Vascular Smooth Muscle Cell Proliferation, Apoptosis, and Atherosclerosis by Enhancing p53 Activity. Circulation, 130, 1452-1465.
https://doi.org/10.1161/CIRCULATIONAHA.114.011675
[104] Wang, H., He, F., Liang, B., et al. (2021) p53-Dependent LincRNA-p21 Protects against Proliferation and Anti-Apoptosis of Vascular Smooth Muscle Cells in Atherosclerosis by Upregulating SIRT7 via MicroRNA-17-5p. Journal of Cardiovascular Translational Research, 14, 426-440.
https://doi.org/10.1007/s12265-020-10074-9
[105] Leisegang, M.S., Fork, C., Josipovic, I., et al. (2017) Long Noncoding RNA MANTIS Facilitates Endothelial Angiogenic Function. Circulation, 136, 65-79.
https://doi.org/10.1161/CIRCULATIONAHA.116.026991
[106] Wu, Q., Zhou, X., Wang, Y., et al. (2022) LncRNA GAS5 Promotes Spermidine-Induced Autophagy through the miRNA-31-5p/NAT8L Axis in Pulmonary Artery Endothelial Cells of Patients with CTEPH. Molecular Medicine Reports, 26, Article No. 297.
https://doi.org/10.3892/mmr.2022.12813
[107] Gofrit, O.N., Benjamin, S., Halachmi, S., et al. (2014) DNA Based Therapy with Diphtheria Toxin-A BC-819: A Phase 2b Marker Lesion Trial in Patients with Intermediate Risk Nonmuscle Invasive Bladder Cancer. Journal of Urology, 191, 1697-1702.
https://doi.org/10.1016/j.juro.2013.12.011
[108] Smaldone, M.C. and Davies, B.J. (2010) BC-819, a Plasmid Comprising the H19 Gene Regulatory Sequences and Diphtheria Toxin A, for the Potential Targeted Therapy of Cancers. Current Opinion in Molecular Therapeutics, 12, 607-616.
[109] Gomes, C.P.C., Spencer, H., Ford, K.L., et al. (2017) The Function and Therapeutic Potential of Long Non-Coding RNAs in Cardiovascular Development and Disease. Molecular Therapy Nucleic Acids, 8, 494-507.
https://doi.org/10.1016/j.omtn.2017.07.014
[110] Hassoun, P.M. (2021) Pulmonary Arterial Hypertension. The New England Journal of Medicine, 385, 2361-2376.
https://doi.org/10.1056/NEJMra2000348
[111] Ruopp, N.F. and Cockrill, B.A. (2022) Diagnosis and Treatment of Pulmonary Arterial Hypertension: A Review. JAMA, 327, 1379-1391.
https://doi.org/10.1001/jama.2022.4402
[112] Han, B., Bu, P., Meng, X., et al. (2017) Microarray Profiling of Long Non-Coding RNAs Associated with Idiopathic Pulmonary Arterial Hypertension. Experimental and Therapeutic Medicine, 13, 2657-2666.
https://doi.org/10.3892/etm.2017.4355
[113] Okazaki, Y., Furuno, M., Kasukawa, T., et al. (2002) Analysis of the Mouse Transcriptome Based on Functional Annotation of 60,770 Full-Length cDNAs. Nature, 420, 563-73.
https://doi.org/10.1038/nature01266
[114] Mattick, J.S. and Makunin, I.V. (2006) Non-Coding RNA. Human Molecular Genetics, 15, R17-R29.
https://doi.org/10.1093/hmg/ddl046
[115] Han, Y., Ali, M.K., Dua, K., et al. (2021) Role of Long Non-Coding RNAs in Pulmonary Arterial Hypertension. Cell, 10, Article No. 1892.
https://doi.org/10.3390/cells10081892
[116] Mercer, T.R., Dinger, M.E. and Mattick, J.S. (2009) Long Non-Coding RNAs: Insights into Functions. Human Molecular Genetics, 10, 155-159.
https://doi.org/10.1038/nrg2521
[117] Beermann, J., Piccoli, M.T., Viereck, J., et al. (2016) Non-Coding RNAs in Development and Disease: Background, Mechanisms, and Therapeutic Approaches. Physiological Reviews, 96, 1297-1325.
https://doi.org/10.1152/physrev.00041.2015
[118] Sun, M., Nie, F., Wang, Y., et al. (2016) LncRNA HOXA11-AS Promotes Proliferation and Invasion of Gastric Cancer by Scaffolding the Chromatin Modification Factors PRC2, LSD1, and DNMT. Cancer Research, 76, 6299-6310.
https://doi.org/10.1158/0008-5472.CAN-16-0356
[119] Gasri-Plotnitsky, L., Ovadia, A., Shamalov, K., et al. (2017) A Novel lncRNA, GASL1, Inhibits Cell Proliferation and Restricts E2F1 Activity. Oncotarget, 8, 23775-23786.
https://doi.org/10.18632/oncotarget.15864
[120] Peng, W.X., Koirala, P. and Mo, Y.Y. (2017) LncRNA-Mediated Regulation of Cell Signaling in Cancer. Oncogene, 36, 5661-5667.
https://doi.org/10.1038/onc.2017.184
[121] Leeper, N.J. and Maegdefessel, L. (2018) Non-Coding RNAs: Key Regulators of Smooth Muscle Cell Fate in Vascular Disease. Cardiovascular Research, 114, 611-621.
https://doi.org/10.1093/cvr/cvx249
[122] Haemmig, S., Simion, V. and Feinberg, M.W. (2018) Long Non-Coding RNAs in Vascular Inflammation. Frontiers in Cardiovascular Medicine, 5, Article No. 22.
https://doi.org/10.3389/fcvm.2018.00022
[123] Leimena, C. and Qiu, H. (2018) Non-Coding RNA in the Pathogenesis, Progression and Treatment of Hypertension. International Journal of Molecular Sciences, 19, Article No. 927.
https://doi.org/10.3390/ijms19040927
[124] Chi, Y., Wang, D., Wang, J., et al. (2019) Long Non-Coding RNA in the Pathogenesis of Cancers. Cells, 8, Article No. 1015.
https://doi.org/10.3390/cells8091015
[125] Simion, V., Haemmig, S. and Feinberg, M.W. (2019) LncRNAs in Vascular Biology and Disease. Vascular Pharmacology, 114, 145-156.
https://doi.org/10.1016/j.vph.2018.01.003
[126] Wolowiec, L., Medlewska, M., Osiak, J., et al. (2023) MicroRNA and lncRNA as the Future of Pulmonary Arterial Hypertension Treatment. International Journal of Molecular Sciences, 24, Article No. 9735.
https://doi.org/10.3390/ijms24119735
[127] WKovacs, G., Dumitrescu, D., Barner, A., et al. (2018) Definition, Clinical Classification and Initial Diagnosis of Pulmonary Hypertension: Updated Recommendations from the Cologne Consensus Conference 2018. International Journal of Cardiology, 272S, 11-19.
https://doi.org/10.1016/j.ijcard.2018.08.083
[128] Vaillancourt, M., Ruffenach, G., Meloche, J., et al. (2015) Adaptation and Remodelling of the Pulmonary Circulation in Pulmonary Hypertension. Canadian Journal of Cardiology, 31, 407-415.
https://doi.org/10.1016/j.cjca.2014.10.023
[129] Sommer, N., Ghofrani, H.A., Pak, O., et al. (2021) Current and Future Treatments of Pulmonary Arterial Hypertension. British Journal of Pharmacology, 178, 6-30.
https://doi.org/10.1111/bph.15016
[130] Leopold, J.A. and Maron, B.A. (2016) Molecular Mechanisms of Pulmonary Vascular Remodeling in Pulmonary Arterial Hypertension. International Journal of Molecular Sciences, 17, Article No. 761.
https://doi.org/10.3390/ijms17050761
[131] Price, L.C., Wort, S.J., Perros, F., et al. (2012) Inflammation in Pulmonary Arterial Hypertension. Chest, 141, 210-221.
https://doi.org/10.1378/chest.11-0793
[132] Nogueira-Ferreira, R., Vitorino, R., Ferreira, R., et al. (2015) Exploring the Monocrotaline Animal Model for the Study of Pulmonary Arterial Hypertension: A Network Approach. Pulmonary Pharmacology & Therapeutics, 35, 8-16.
https://doi.org/10.1016/j.pupt.2015.09.007
[133] Rieg, A.D., Suleiman, S., Anker, C., et al. (2018) PDGF-BB Regulates the Pulmonary Vascular Tone: Impact of Prostaglandins, Calcium, MAPK- and PI3K/AKT/mTOR Signalling and Actin Polymerisation in Pulmonary Veins of Guinea Pigs. Respiratory Research, 19, Article No. 120.
https://doi.org/10.1186/s12931-018-0829-5
[134] Qian, Z., Li, Y., Chen, J., et al. (2017) miR-4632 Mediates PDGF-BB-Induced Proliferation and Antiapoptosis of Human Pulmonary Artery Smooth Muscle Cells via Targeting cJUN. American Journal of Physiology-Cell Physiology, 313, C380-C391.
https://doi.org/10.1152/ajpcell.00061.2017
[135] Tan, W.S.D., Liao, W., Zhou, S., et al. (2018) Targeting the Renin-Angiotensin System as Novel Therapeutic Strategy for Pulmonary Diseases. Current Opinion in Pharmacology, 40, 9-17.
https://doi.org/10.1016/j.coph.2017.12.002
[136] Viswanathan, G., Mamazhakypov, A., Schermuly, R.T., et al. (2018) The Role of G Protein-Coupled Receptors in the Right Ventricle in Pulmonary Hypertension. Frontiers in Cardiovascular Medicine, 5, Article No. 179.
https://doi.org/10.3389/fcvm.2018.00179
[137] De Man, F.S., Tu, L., Handoko, M.L., et al. (2012) Dysregulated Renin-Angiotensin-Aldosterone System Contributes to Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 186, 780-790.
https://doi.org/10.1164/rccm.201203-0411OC
[138] Gupta, V.S. and Harting, M.T. (2020) Congenital Diaphragmatic Hernia-Associated Pulmonary Hypertension. Seminars in Perinatology, 44, Article ID: 151167.
https://doi.org/10.1053/j.semperi.2019.07.006
[139] Longoni, M., Russell, M.K., High, F.A., et al. (2015) Prevalence and Penetrance of ZFPM2 Mutations and Deletions Causing Congenital Diaphragmatic Hernia. Clinical Genetics, 87, 362-367.
https://doi.org/10.1111/cge.12395
[140] McCulley, D.J., Wienhold, M.D., Hines, E.A., et al. (2018) PBX Transcription Factors Drive Pulmonary Vascular Adaptation to Birth. Journal of Clinical Investigation, 128, 655-667.
https://doi.org/10.1172/JCI93395
[141] Cao, Y., Yang, Y., Wang, L., et al. (2018) Analyses of Long Non-Coding RNA and mRNA Profiles in Right Ventricle Myocardium of Acute Right Heart Failure in Pulmonary Arterial Hypertension Rats. Biomedicine & Pharmacotherapy, 106, 1108-1115.
https://doi.org/10.1016/j.biopha.2018.07.057
[142] Zahid, K.R., Raza, U., Chen, J., et al. (2020) Pathobiology of Pulmonary Artery Hypertension: Role of Long Non-Coding RNAs. Cardiovascular Research, 116, 1937-1947.
https://doi.org/10.1093/cvr/cvaa050
[143] Awad, K.S., West, J.D., de Jesus Perez, V., et al. (2016) Novel Signaling Pathways in Pulmonary Arterial Hypertension (2015 Grover Conference Series). Pulmonary Circulation, 6, 285-294.
https://doi.org/10.1086/688034
[144] Wilson, J.L., Yu, J., Taylor, L., et al. (2015) Hyperplastic Growth of Pulmonary Artery Smooth Muscle Cells from Subjects with Pulmonary Arterial Hypertension Is Activated through JNK and p38 MAPK. PLOS ONE, 14, e0123662.
https://doi.org/10.1371/journal.pone.0123662
[145] Wang, J., Feng, W., Li, F., et al. (2019) SphK1/S1P Mediates TGF-β1-Induced Proliferation of Pulmonary Artery Smooth Muscle Cells and Its Potential Mechanisms. Pulmonary Circulation, 9, 1-8.
https://doi.org/10.1177/2045894018816977
[146] Wang, D., Xu, H., Wu, B., et al. (2019) Long Non‑Coding RNA MALAT1 Sponges miR‑124‑3p.1/KLF5 to Promote Pulmonary Vascular Remodeling and Cell Cycle Progression of Pulmonary Artery Hypertension. International Journal of Molecular Medicine, 44, 871-884.
https://doi.org/10.3892/ijmm.2019.4256
[147] Chen, J., Guo, J., Cui, X., et al. (2018) The Long Noncoding RNA LnRPT Is Regulated by PDGF-BB and Modulates the Proliferation of Pulmonary Artery Smooth Muscle Cells. American Journal of Respiratory Cell and Molecular Biology, 58, 181-193.
https://doi.org/10.1165/rcmb.2017-0111OC
[148] Juan, V., Crain, C. and Wilson, C. (2000) Evidence for Evolutionarily Conserved Secondary Structure in the H19 Tumor Suppressor RNA. Nucleic Acids Research, 28, 1221-1227.
https://doi.org/10.1093/nar/28.5.1221
[149] Cai, X. and Cullen, B.R. (2007) The Imprinted H19 Noncoding RNA Is a Primary microRNA Precursor. RNA, 13, 313-316.
https://doi.org/10.1261/rna.351707
[150] Huang, S.F., Zhao, G., Peng, X.F., et al. (2021) The Pathogenic Role of Long Non-Coding RNA H19 in Atherosclerosis via the miR-146a-5p/ANGPTL4 Pathway. Frontiers in Cardiovascular Medicine, 8, Article ID: 770163.
https://doi.org/10.3389/fcvm.2021.770163
[151] Pan, J.X. (2017) LncRNA H19 Promotes Atherosclerosis by Regulating MAPK and NF-kB Signaling Pathway. European Review for Medical and Pharmacological Sciences, 21, 322-328.
[152] Kallen, A.N., Zhou, X.B., Xu, J., et al. (2013) The Imprinted H19 lncRNA Antagonizes let-7 microRNAs. Molecular Cell, 52, 101-112.
https://doi.org/10.1016/j.molcel.2013.08.027
[153] Su, H., Xu, X., Yan, C., et al. (2018) LncRNA H19 Promotes the Proliferation of Pulmonary Artery Smooth Muscle Cells through AT1R via Sponging let-7b in Monocrotaline-Induced Pulmonary Arterial Hypertension. Respiratory Research, 19, Article No. 254.
https://doi.org/10.1186/s12931-018-0956-z
[154] Wang, R., Zhou, S., Wu, P., et al. (2018) Identifying Involvement of H19-miR-675-3p-IGF1R and H19-miR-200a-PDCD4 in Treating Pulmonary Hypertension with Melatonin. Molecular Therapy Nucleic Acids, 13, 44-54.
https://doi.org/10.1016/j.omtn.2018.08.015
[155] Omura, J., Habbout, K., Shimauchi, T., et al. (2020) Identification of Long Noncoding RNA H19 as a New Biomarker and Therapeutic Target in Right Ventricular Failure in Pulmonary Arterial Hypertension. Circulation, 142, 1464-1484.
https://doi.org/10.1161/CIRCULATIONAHA.120.047626
[156] Yang, L., Liang, H., Shen, L., et al. (2019) LncRNA Tug1 Involves in the Pulmonary Vascular Remodeling in Mice with Hypoxic Pulmonary Hypertension via the microRNA-374c-Mediated Foxc1. Life Sciences, 237, Article ID: 116769.
https://doi.org/10.1016/j.lfs.2019.116769
[157] Zhang, H., Liu, Y., Yan, L., et al. (2019) Long Noncoding RNA Hoxaas3 Contributes to Hypoxia-Induced Pulmonary Artery Smooth Muscle Cell Proliferation. Cardiovascular Research, 115, 647-657.
https://doi.org/10.1093/cvr/cvy250
[158] Sun, Z., Nie, X., Sun, S., et al. (2017) Long Non-Coding RNA MEG3 Downregulation Triggers Human Pulmonary Artery Smooth Muscle Cell Proliferation and Migration via the p53 Signaling Pathway. Cellular Physiology and Biochemistry, 42, 2569-2581.
https://doi.org/10.1159/000480218
[159] Zhu, B., Gong, Y., Yan, G., et al. (2018) Down-Regulation of lncRNA MEG3 Promotes Hypoxia-Induced Human Pulmonary Artery Smooth Muscle Cell Proliferation and Migration via Repressing PTEN by Sponging miR-21. Biochemical and Biophysical Research Communications, 495, 2125-2132.
https://doi.org/10.1016/j.bbrc.2017.11.185
[160] Xing, Y., Zheng, X., Fu, Y., et al. (2019) Long Noncoding RNA-Maternally Expressed Gene 3 Contributes to Hypoxic Pulmonary Hypertension. Molecular Therapy, 27, 2166-2181.
https://doi.org/10.1016/j.ymthe.2019.07.022
[161] Zhang, X., Hamblin, M.H. and Yin, K.J. (2017) The Long Noncoding RNA Malat1: Its Physiological and Pathophysiological Functions. RNA Biology, 14, 1705-1714.
https://doi.org/10.1080/15476286.2017.1358347
[162] Brock, M., Schuoler, C., Leuenberger, C., et al. (2017) Analysis of Hypoxia-Induced Noncoding RNAs Reveals Metastasis-Associated Lung Adenocarcinoma Transcript 1 as an Important Regulator of Vascular Smooth Muscle Cell Proliferation. Experimental Biology and Medicine (Maywood), 242, 487-496.
https://doi.org/10.1177/1535370216685434
[163] Zhuo, Y., Zeng, Q., Zhang, P., et al. (2017) Functional Polymorphism of lncRNA MALAT1 Contributes to Pulmonary Arterial Hypertension Susceptibility in Chinese People. Clinical Chemistry and Laboratory Medicine, 55, 38-46.
https://doi.org/10.1515/cclm-2016-0056
[164] He, M., Shen, J., Zhang, C., et al. (2020) Long-Chain Non-Coding RNA Metastasis-Related Lung Adenocarcinoma Transcript 1 (MALAT1) Promotes the Proliferation and Migration of Human Pulmonary Artery Smooth Muscle Cells (hPASMCs) by Regulating the MicroRNA-503 (miR-503)/Toll-Like Receptor 4 (TLR4) Signal Axis. Medical Science Monitor, 26, e923123.
https://doi.org/10.12659/MSM.923123
[165] Zhou, H., Sun, L. and Wan, F. (2019) Molecular Mechanisms of TUG1 in the Proliferation, Apoptosis, Migration and Invasion of Cancer Cells. Oncology Letters, 18, 4393-4402.
https://doi.org/10.3892/ol.2019.10848
[166] Wang, S., Cao, W., Gao, S., et al. (2019) TUG1 Regulates Pulmonary Arterial Smooth Muscle Cell Proliferation in Pulmonary Arterial Hypertension. Canadian Journal of Cardiology, 35, 1534-1545.
https://doi.org/10.1016/j.cjca.2019.07.630
[167] Yao, Q., Wang, C., Wang, Y., et al. (2022) The Integrated Comprehension of lncRNA HOXA-AS3 Implication on Human Diseases. Clinical and Translational Oncology, 24, 2342-2350.
https://doi.org/10.1007/s12094-022-02920-w
[168] Li, Z.K., Gao, L.F., Zhu, X.A., et al. (2021) LncRNA HOXA-AS3 Promotes the Progression of Pulmonary Arterial Hypertension through Mediation of miR-675-3p/PDE5A Axis. Biochemical Genetics, 59, 1158-1172.
https://doi.org/10.1007/s10528-021-10053-y
[169] Zehendner, C.M., Valasarajan, C., Werner, A., et al. (2020) Long Noncoding RNA TYKRIL Plays a Role in Pulmonary Hypertension via the p53-mediated Regulation of PDGFRβ. American Journal of Respiratory and Critical Care Medicine, 202, 1445-1457.
https://doi.org/10.1164/rccm.201910-2041OC
[170] Wang, F., Li, X., Xie, X., et al. (2008) UCA1, a Non-Protein-Coding RNA Up-Regulated in Bladder Carcinoma and Embryo, Influencing Cell Growth and Promoting Invasion. FEBS Letters, 582, 1919-1927.
https://doi.org/10.1016/j.febslet.2008.05.012
[171] He, A., Hu, R., Chen, Z., et al. (2017) Role of Long Noncoding RNA UCA1 as a Common Molecular Marker for Lymph Node Metastasis and Prognosis in Various Cancers: A Meta-Analysis. Oncotarget, 8, 1937-1943.
https://doi.org/10.18632/oncotarget.12463
[172] Zhu, T.T., Sun, R.L., Yin, Y.L., et al. (2019) Long Noncoding RNA UCA1 Promotes the Proliferation of Hypoxic Human Pulmonary Artery Smooth Muscle Cells. Pflügers Archiv, 471, 347-355.
https://doi.org/10.1007/s00424-018-2219-8
[173] Lei, S., Peng, F., Li, M.L., et al. (2020) LncRNA-SMILR Modulates RhoA/ROCK Signaling by Targeting miR-141 to Regulate Vascular Remodeling in Pulmonary Arterial Hypertension. The American Journal of Physiology-Heart and Circulatory Physiology, 319, H377-H391.
https://doi.org/10.1152/ajpheart.00717.2019
[174] Ballantyne, M.D., Pinel, K., Dakin, R., et al. (2016) Smooth Muscle Enriched Long Noncoding RNA (SMILR) Regulates Cell Proliferation. Circulation, 133, 2050-2065.
https://doi.org/10.1161/CIRCULATIONAHA.115.021019
[175] Mahmoud, A.D., Ballantyne, M.D., Miscianinov, V., et al. (2019) The Human-Specific and Smooth Muscle Cell-Enriched LncRNA SMILR Promotes Proliferation by Regulating Mitotic CENPF mRNA and Drives Cell-Cycle Progression Which Can Be Targeted to Limit Vascular Remodeling. Circulation Research, 125, 535-551.
https://doi.org/10.1161/CIRCRESAHA.119.314876
[176] Carpenter, S., Aiello, D., Atianand, M.K., et al. (2013) A Long Noncoding RNA Mediates both Activation and Repression of Immune Response Genes. Science, 341, 789-792.
https://doi.org/10.1126/science.1240925
[177] Xue, Z., Zhang, Z., Liu, H., et al. (2019) lincRNA-Cox2 Regulates NLRP3 Inflammasome and Autophagy Mediated Neuroinflammation. Cell Death & Differentiation, 26, 130-145.
https://doi.org/10.1038/s41418-018-0105-8
[178] Cheng, G., He, L. and Zhang, Y. (2020) LincRNA-Cox2 Promotes Pulmonary Arterial Hypertension by Regulating the let-7a-Mediated STAT3 Signaling Pathway. Molecular and Cellular Biochemistry, 475, 239-247.
https://doi.org/10.1007/s11010-020-03877-6
[179] Leung, A., Trac, C., Jin, W., et al. (2013) Novel Long Noncoding RNAs Are Regulated by Angiotensin II in Vascular Smooth Muscle Cells. Circulation Research, 113, 266-278.
https://doi.org/10.1161/CIRCRESAHA.112.300849
[180] Nie, X., Chen, Y., Tan, J., et al. (2019) MicroRNA-221-3p Promotes Pulmonary Artery Smooth Muscle Cells Proliferation by Targeting AXIN2 during Pulmonary Arterial Hypertension. Vascular Pharmacology, 116, 24-35.
https://doi.org/10.1016/j.vph.2017.07.002
[181] Wang, H., Qin, R. and Cheng, Y. (2020) LncRNA-Ang362 Promotes Pulmonary Arterial Hypertension by Regulating miR-221 and miR-222. Shock, 53, 723-729.
https://doi.org/10.1097/SHK.0000000000001410
[182] Jandl, K., Thekkekara Puthenparampil, H., Marsh, L.M., et al. (2019) Long Non-Coding RNAs Influence the Transcriptome in Pulmonary Arterial Hypertension: The Role of PAXIP1-AS1. The Journal of Pathology, 247, 357-370.
https://doi.org/10.1002/path.5195
[183] Song, R., Lei, S., Yang, S., et al. (2021) LncRNA PAXIP1-AS1 Fosters the Pathogenesis of Pulmonary Arterial Hypertension via ETS1/WIPF1/RhoA Axis. Journal of Cellular and Molecular Medicine, 25, 7321-7334.
https://doi.org/10.1111/jcmm.16761
[184] Qin, Y., Zhu, B., Li, L., et al. (2021) Overexpressed lncRNA AC068039.4 Contributes to Proliferation and Cell Cycle Progression of Pulmonary Artery Smooth Muscle Cells via Sponging miR-26a-5p/TRPC6 in Hypoxic Pulmonary Arterial Hypertension. Shock, 55, 244-255.
https://doi.org/10.1097/SHK.0000000000001606
[185] Wang, L., Han, S., Jin, G., et al. (2014) Linc00963: A Novel, Long Non-Coding RNA Involved in the Transition of Prostate Cancer from Androgen-Dependence to Androgen-Independence. International Journal of Oncology, 44, 2041-2049.
https://doi.org/10.3892/ijo.2014.2363
[186] Xie, Z., Zhong, C., Shen, J., et al. (2022) LINC00963: A Potential Cancer Diagnostic and Therapeutic Target. Biomedicine & Pharmacotherapy, 150, Article ID: 113019.
https://doi.org/10.1016/j.biopha.2022.113019
[187] Yang, C., Rong, R., Li, Y., et al. (2022) Decrease in LINC00963 Attenuates the Progression of Pulmonary Arterial Hypertension via microRNA-328-3p/Profilin 1 Axis. Journal of Clinical Laboratory Analysis, 36, e24383.
https://doi.org/10.1002/jcla.24383
[188] Huppi, K., Volfovsky, N., Runfola, T., et al. (2008) The Identification of microRNAs in a Genomically Unstable Region of Human Chromosome 8q24. Molecular Cancer Research, 6, 212-221.
https://doi.org/10.1158/1541-7786.MCR-07-0105
[189] Jin, K., Wang, S., Zhang, Y., et al. (2019) Long Non-Coding RNA PVT1 Interacts with MYC and Its Downstream Molecules to Synergistically Promote Tumorigenesis. Cellular and Molecular Life Sciences, 76, 4275-4289.
https://doi.org/10.1007/s00018-019-03222-1
[190] Xia, X., Huang, L., Zhou, S., et al. (2023) Hypoxia-Induced Long Non-Coding RNA Plasmacytoma Variant Translocation 1 Upregulation Aggravates Pulmonary Arterial Smooth Muscle Cell Proliferation by Regulating Autophagy via miR-186/Srf/Ctgf and miR-26b/Ctgf Signaling Pathways. International Journal of Cardiology, 370, 368-377.
https://doi.org/10.1016/j.ijcard.2022.09.060
[191] Yu, X., Li, Z., Zheng, H., et al. (2017) NEAT1: A Novel Cancer-Related Long Non-Coding RNA. Cell Proliferation, 50, e12329.
https://doi.org/10.1111/cpr.12329
[192] Dou, X., Ma, Y., Qin, Y., et al. (2021) NEAT1 Silencing Alleviates Pulmonary Arterial Smooth Muscle Cell Migration and Proliferation under Hypoxia through Regulation of miR‑34a‑5p/KLF4 in Vitro. Molecular Medicine Reports, 24, Article No. 749.
https://doi.org/10.3892/mmr.2021.12389
[193] Wu, Z.H., Zhou, J., Hu, G.H., et al. (2021) LncRNA CASC2 Inhibits Lung Adenocarcinoma Progression through Forming Feedback Loop with miR-21/p53 Axis. The Kaohsiung Journal of Medical Sciences, 37, 675-685.
https://doi.org/10.1002/kjm2.12386
[194] Gong, J., Chen, Z., Chen, Y., et al. (2019) Long Non-Coding RNA CASC2 Suppresses Pulmonary Artery Smooth Muscle Cell Proliferation and Phenotypic Switch in Hypoxia-Induced Pulmonary Hypertension. Respiratory Research, 20, Article No. 53.
https://doi.org/10.1186/s12931-019-1018-x
[195] Han, Y., Liu, Y., Yang, C., et al. (2020) LncRNA CASC2 Inhibits Hypoxia-Induced Pulmonary Artery Smooth Muscle Cell Proliferation and Migration by Regulating the miR-222/ING5 Axis. Cell & Molecular Bio Letters, 25, Article No. 21.
https://doi.org/10.1186/s11658-020-00215-y
[196] Liu, Y., Hu, R., Zhu, J., et al. (2021) The lncRNA PAHRF Functions as a Competing Endogenous RNA to Regulate MST1 Expression by Sponging miR-23a-3p in Pulmonary Arterial Hypertension. Vascular Pharmacology, 139, Article ID: 106886.
https://doi.org/10.1016/j.vph.2021.106886
[197] Kino, T., Hurt, D.E., Ichijo, T., Nader, N. and Chrousos, G.P. (2010) Noncoding RNA gas5 Is a Growth Arrest and Starvation-Associated Repressor of the Glucocorticoid Receptor. Science Signaling, 3, ra8.
https://doi.org/10.1126/scisignal.2000568
[198] Gao, Z.Q., Wang, J.F., Chen, D.H., et al. (2017) Long Non-Coding RNA GAS5 Suppresses Pancreatic Cancer Metastasis through Modulating miR-32-5p/PTEN Axis. Cell & Bioscience, 7, Article No. 66.
https://doi.org/10.1186/s13578-017-0192-0
[199] Li, Y., Gu, J. and Lu, H. (2017) The GAS5/miR-222 Axis Regulates Proliferation of Gastric Cancer Cells through the PTEN/Akt/mTOR Pathway. Digestive Diseases and Sciences, 62, 3426-3437.
https://doi.org/10.1007/s10620-017-4831-4
[200] Tang, R., Zhang, G., Wang, Y.C., et al. (2017) The Long Non-Coding RNA GAS5 Regulates Transforming Growth Factor β (TGF-β)-Induced Smooth Muscle Cell Differentiation via RNA Smad-Binding Elements. Journal of Biological Chemistry, 292, 14270-14278.
https://doi.org/10.1074/jbc.M117.790030
[201] Hao, X., Li, H., Zhang, P., et al. (2020) Down-Regulation of lncRNA Gas5 Promotes Hypoxia-Induced Pulmonary Arterial Smooth Muscle Cell Proliferation by Regulating KCNK3 Expression. European Journal of Pharmacology, 889, Article ID: 173618.
https://doi.org/10.1016/j.ejphar.2020.173618
[202] Feng, X., Wang, K., Yang, T., et al. (2022) LncRNA-GAS5/miR-382-3p Axis Inhibits Pulmonary Artery Remodeling and Promotes Autophagy in Chronic Thromboembolic Pulmonary Hypertension. Genes Genomics, 44, 395-404.
https://doi.org/10.1007/s13258-021-01202-z
[203] Liu, Y., Zhang, H., Li, Y., et al. (2020) Long Noncoding RNA Rps4l Mediates the Proliferation of Hypoxic Pulmonary Artery Smooth Muscle Cells. Hypertension, 76, 1124-1133.
https://doi.org/10.1161/HYPERTENSIONAHA.120.14644
[204] Li, Y., Zhang, J., Sun, H., et al. (2021) lnc-Rps4l-Encoded Peptide RPS4XL Regulates RPS6 Phosphorylation and Inhibits the Proliferation of PASMCs Caused by Hypoxia. Molecular Therapy, 29, 1411-1424.
https://doi.org/10.1016/j.ymthe.2021.01.005
[205] Li, Y., Zhang, J., Sun, H., et al. (2022) RPS4XL Encoded by lnc-Rps4l Inhibits Hypoxia-Induced Pyroptosis by Binding HSC70 Glycosylation Site. Molecular Therapy Nucleic Acids, 28, 920-934.
https://doi.org/10.1016/j.omtn.2022.05.033
[206] Liu, Y., Sun, Z., Zhu, J., et al. (2018) LncRNA-TCONS_00034812 in Cell Proliferation and Apoptosis of Pulmonary Artery Smooth Muscle Cells and Its Mechanism. Journal of Cellular Physiology, 233, 4801-4814.
https://doi.org/10.1002/jcp.26279
[207] Lin, D., Zhang, X., Zhang, C., et al. (2021) LncRNA-TCONS_00034812 Is Upregulated in Atherosclerosis and Upregulates miR-21 through Methylation in Vascular Smooth Muscle Cells. Annals of Translational Medicine, 9, 1005.
https://doi.org/10.21037/atm-21-2632
[208] Pasmant, E., Laurendeau, I., Héron, D., et al. (2007) Characterization of a Germ-Line Deletion, Including the Entire INK4/ARF Locus, in a Melanoma-Neural System Tumor Family: Identification of ANRIL, an Antisense Noncoding RNA Whose Expression Coclusters with ARF. Cancer Research, 67, 3963-3969.
https://doi.org/10.1158/0008-5472.CAN-06-2004
[209] Chen, L., Qu, H., Guo, M., et al. (2020) ANRIL and Atherosclerosis. Journal of Clinical Pharmacy and Therapeutics, 45, 240-248.
https://doi.org/10.1111/jcpt.13060
[210] Wang, S., Zhang, C. and Zhang, X. (2020) Downregulation of Long Non‑Coding RNA ANRIL Promotes Proliferation and Migration in Hypoxic Human Pulmonary Artery Smooth Muscle Cells. Molecular Medicine Reports, 21, 589-596.
https://doi.org/10.3892/mmr.2019.10887
[211] Deng, L., Chen, J., Chen, B., et al. (2022) LncPTSR Triggers Vascular Remodeling in Pulmonary Hypertension by Regulating [Ca2+]i in Pulmonary Arterial Smooth Muscle Cells. American Journal of Respiratory Cell and Molecular Biology, 66, 524-538.
https://doi.org/10.1165/rcmb.2020-0480OC
[212] Wu, G., Cai, J., Han, Y., et al. (2014) LincRNA-p21 Regulates Neointima Formation, Vascular Smooth Muscle Cell Proliferation, Apoptosis, and Atherosclerosis by Enhancing p53 Activity. Circulation, 130, 1452-1465.
https://doi.org/10.1161/CIRCULATIONAHA.114.011675
[213] Wang, H., He, F., Liang, B., et al. (2021) p53-Dependent LincRNA-p21 Protects against Proliferation and Anti-Apoptosis of Vascular Smooth Muscle Cells in Atherosclerosis by Upregulating SIRT7 via MicroRNA-17-5p. Journal of Cardiovascular Translational Research, 14, 426-440.
https://doi.org/10.1007/s12265-020-10074-9
[214] Leisegang, M.S., Fork, C., Josipovic, I., et al. (2017) Long Noncoding RNA MANTIS Facilitates Endothelial Angiogenic Function. Circulation, 136, 65-79.
https://doi.org/10.1161/CIRCULATIONAHA.116.026991
[215] Wu, Q., Zhou, X., Wang, Y., et al. (2022) LncRNA GAS5 Promotes Spermidine-Induced Autophagy through the miRNA-31-5p/NAT8L Axis in Pulmonary Artery Endothelial Cells of Patients with CTEPH. Molecular Medicine Reports, 26, Article No. 297.
https://doi.org/10.3892/mmr.2022.12813
[216] Gofrit, O.N., Benjamin, S., Halachmi, S., et al. (2014) DNA Based Therapy with Diphtheria Toxin-A BC-819: A Phase 2b Marker Lesion Trial in Patients with Intermediate Risk Nonmuscle Invasive Bladder Cancer. Journal of Urology, 191, 1697-1702.
https://doi.org/10.1016/j.juro.2013.12.011
[217] Smaldone, M.C. and Davies, B.J. (2010) BC-819, a Plasmid Comprising the H19 Gene Regulatory Sequences and Diphtheria Toxin A, for the Potential Targeted Therapy of Cancers. Current Opinion in Molecular Therapeutics, 12, 607-616.
[218] Gomes, C.P.C., Spencer, H., Ford, K.L., et al. (2017) The Function and Therapeutic Potential of Long Non-Coding RNAs in Cardiovascular Development and Disease. Molecular Therapy Nucleic Acids, 8, 494-507.
https://doi.org/10.1016/j.omtn.2017.07.014