基于预条件共扼残差法截断牛顿法的全波形反演
Full Waveform Inversion Based onPreconditioned Conjugate ResidualTruncated Newton Method
DOI: 10.12677/PM.2023.1311347, PDF, 下载: 91  浏览: 122  国家自然科学基金支持
作者: 曾钵祁, 何清龙*:贵州大学数学与统计学院,贵州 贵阳
关键词: 全波形反演共扼残差法截断牛顿法Full Waveform Inversion Conjugate Residual Method Truncated Newton Method
摘要: 全波形反演(FWI)是一个大规模的非线性不适定问题,其二阶梯度信息有着重要的作用,但牛顿型方法需要计算量和存储量巨大。本文基于共扼残差方法和信赖域全局化策略提出了一种高效的载断牛顿全波形反演方法,该全波形反演方法能够充分利用目标泛函的二阶梯度信息,从而提高反演精度,为了加速共扼残差法的收敛速度和计算效率,本文给出了预处理的共扼残差方法并给出了其相关性质。基于二维2004 BP模型和Sizsbee模型,验证了预处理共扼残差截断牛顿反演方法的有效性。数值结果表明预处理共辄残差截断牛顿法能充分利用二阶梯度信息,从而加速算法收敛速度和提高成像精度。
Abstract: Full waveform inversion (FWI) is a large-scale nonlinear ill-posed problem, and its second-order gradient information plays an important role. However, the implementa- tion of Newton-type method is expensive. In this paper, an efficient truncated Newton full waveform inversion method is proposed based on the conjugate residual method. The full waveform inversion method can make full use of the second-order gradient information of the target functional and improve the inversion accuracy. Aiming at the problem that the truncated Newton method depends on the initial value selection, this paper combines the trust region globalization strategy into the truncated Newton method. In order to accelerate the convergence rate of the conjugate residual method, the preprocessing operator is introduced in this paper. Based on the two-dimensional 2004 BP model and the Sigsbee model, the effectiveness of the preconditioned conju- gate residual truncated Newton inversion method is verified. The numerical results show that the preconditioned conjugate residual truncated Newton method can make full use of the second-order gradient information, thus accelerating the convergence speed of the algorithm and improving the imaging accuracy.
文章引用:曾钵祁, 何清龙. 基于预条件共扼残差法截断牛顿法的全波形反演[J]. 理论数学, 2023, 13(11): 3342-3357. https://doi.org/10.12677/PM.2023.1311347

参考文献

[1] Lailly, P. (1983) The Seismic Inverse Problem as a Sequence of before Stack Migrations. In: Bednar, J.B., Robinson, E. and Weglein, A., Eds., Conference on Inverse Scattering|Theory and Application, SIAM, Philadelphia, 206-220.
[2] Tarantola, A. (1984) Inversion of Seismic Re ection Data in the Acoustic Approximation. Geophysics, 49, 1259-1266.
https://doi.org/10.1190/1.1441754
[3] Tarantola, A. (1986) A Strategy for Nonlinear Elastic Inversion of Seismic Re ection Data. Geophysics, 51, 1893-1903.
https://doi.org/10.1190/1.1442046
[4] Pratt, R.G. (1990) Frequency-Domain Elastic Wave Modeling by Finite Differences: A Tool or Crosshole Seismic Imaging. Geophysics, 55, 626-632.
https://doi.org/10.1190/1.1442874
[5] Mora, P. (1989) Inversion Migration Tomography. Geophysics, 54, 1575-1586.
https://doi.org/10.1190/1.1442625
[6] Sirgue, L. and Pratt, R.G. (2004) Efficient Waveform Inversion and Imaging: A Strategy for Selecting Temporal Frequencies. Geophysics, 69, 231-248.
https://doi.org/10.1190/1.1649391
[7] Choi, Y., Shin, C., Min, D.-J. and Ha, T. (2005) Efficient Calculation of the Steepest Descent Direction for Source-Independent Seismic Waveform Inversion: An Amplitude Approach. Journal of Computational Physics, 208, 455-468.
https://doi.org/10.1016/j.jcp.2004.09.019
[8] Pratt, R.G., Shin, C. and Hick, G. (1998) Gauss-Newton and Full Newton Methods in Frequency-Space Seismic Waveform Inversion. Geophysical Journal International, 133, 341- 362.
https://doi.org/10.1046/j.1365-246X.1998.00498.x
[9] Brossier, R., Operto, S. and Virieux, J. (2009) Seismic Imaging of Complex Onshore Structures by 2D Elastic Frequency-Domain Full-Waveform Inversion. Geophysics, 74, WCC105- WCC118.
https://doi.org/10.1190/1.3215771
[10] Metivier, L., Brossier, R., Virieux, J. and Operto, S. (2013) Full Waveform Inversion and the Truncated Newton Method. SIAM Journal on Scientific Computing, 35, B401-B437.
https://doi.org/10.1137/120877854
[11] Wang, Y. and Yuan, Y. (2005) Convergence and Regularity of Trust Region Methods for Nonlinear Ill-Posed Inverse Problems. Inverse Problems, 21, 821.
https://doi.org/10.1088/0266-5611/21/3/003
[12] Hestenes, M.R., Stiefel, E., et al. (1952) Methods of Conjugate Gradients for Solving Linear Systems. Journal of research of the National Bureau of Standards, 49, 409-436.
https://doi.org/10.6028/jres.049.044
[13] Fong, D.C.-L. and Saunders, M. (2012) CG versus MINRES: An Empirical Comparison. Sultan Qaboos University Journal for Science, 17, 44-62.
https://doi.org/10.24200/squjs.vol17iss1pp44-62
[14] Luenberger, D.G. (1970) The Conjugate Residual Method for Constrained Minimization Problems. SIAM Journal on Numerical Analysis, 7, 390-398.
https://doi.org/10.1137/0707032
[15] Dahito, M.-A. and Orban, D. (2019) The Conjugate Residual Method in Linesearch and Trust- Region Methods. SIAM Journal on Optimization, 29, 1988-2025.
https://doi.org/10.1137/18M1204255
[16] Shin, C., Jang, S. and Min, D.-J. (2001) Improved Amplitude Preservation for Prestack Depth Migration by Inverse Scattering Theory. Geophysical Prospecting, 49, 592-606.
https://doi.org/10.1046/j.1365-2478.2001.00279.x
[17] Hustedt, B., Operto, S. and Virieux, J. (2004) Mixed-Grid and Staggered-Grid Finite- Difference Methods for Frequency-Domain Acoustic Wave Modelling. Geophysical Journal In- ternational, 157, 1269-1296.
https://doi.org/10.1111/j.1365-246X.2004.02289.x
[18] Berenger, J.-P. (1994) A Perfectly Matched Layer for the Absorption of ElectromagneticWaves. Journal of Computational Physics, 114, 185-200.
https://doi.org/10.1006/jcph.1994.1159
[19] Ghysels, P., Li, X.S., Rouet, F.-H., Williams, S. and Napov, A. (2016) An Efficient Multicore Implementation of a Novel HSS-Structured Multifrontal Solver Using Randomized Sampling. SIAM Journal on Scientific Computing, 38, S358-S384.
https://doi.org/10.1137/15M1010117
[20] Billette, F. and Brandsberg-Dahl, S. (2005) The 2004 BP Velocity Benchmark. 67th EAGE Conference Exhibition, European Association of Geoscientists Engineers, Madrid, 13-16 June 2005, cp-1-00513.
https://doi.org/10.3997/2214-4609-pdb.1.B035
[21] Paffenholz, J., McLain, B., Zaske, J. and Keliher, P.J. (2002) Subsalt Multiple Attenuation and Imaging: Observations from the Sigsbee2B Synthetic Dataset. SEG International Exposition and Annual Meeting, Salt Lake City, 6-11 October 2002, 2122-2125.
https://doi.org/10.1190/1.1817123