#### 期刊菜单

Research on Accuracy Evaluation Method of Full-Electromagnetic Transient Digital Simulation Model in Power System
DOI: 10.12677/AEPE.2023.116023, PDF, HTML, XML, 下载: 155  浏览: 279

Abstract: With the gradual construction of new power system, higher requirements for power system simulation technology have been presented for the large-scale access of high-proportion new energy and high-proportion power electronic equipment. The full-electromagnetic transient digital simulation in power system has been used as the main means of large power grid simulation analysis step by step, and the simulation accuracy has great effects on the safe and stable operation of power grid. In this paper, from the static and dynamic perspectives, the average percentage error is used to calcu-late the residual similarity, and the coefficient method is used to calculate the shape similarity. A simulation accuracy evaluation method concerning the above two similarity indexes is proposed. The full-electromagnetic transient modeling simulation and fault inversion of East China Power Grid are carried out on the ADPSS platform for the “9·27”’ fault in 2020 in East China power grid. The measured data and simulation results of the ±1100 kV Changji-Guquan UHVDC transmission system have been compared, and the example analysis was made, which proved the effectiveness of the evaluation method.

1. 引言

2. 仿真精度量化指标的计算

2.1. 残差相似度

${S}_{N}\left(Y,\stackrel{^}{Y}\right)=1-\frac{1}{n}\underset{i=1}{\overset{n}{\sum }}\frac{|{y}_{i}-{\stackrel{^}{y}}_{i}|}{|{y}_{i}|}$ (1)

2.2. 形状相似度

$\stackrel{¯}{{\omega }_{i}}=\frac{{\omega }_{i}-\left({\omega }_{\mathrm{max}}+{\omega }_{\mathrm{min}}\right)/2}{\left({\omega }_{\mathrm{max}}-{\omega }_{\mathrm{min}}\right)/2}$ (2)

${S}_{M}\left(Y,\stackrel{^}{Y}\right)=\frac{\underset{i=1}{\overset{k}{\sum }}\left[length\left({Y}_{i}\right)+length\left({\stackrel{^}{Y}}_{i}\right)\right]}{length\left(Y\right)+length\left(\stackrel{^}{Y}\right)}$ (3)

3. 仿真精度的综合评估

${S}_{C}\left(Y,\stackrel{^}{Y}\right)=\alpha {S}_{N}\left(Y,\stackrel{^}{Y}\right)+\left(1-\alpha \right){S}_{M}\left(Y,\stackrel{^}{Y}\right)$ (4)

${S}_{C}\left(Y,\stackrel{^}{Y}\right)=\underset{j=1}{\overset{4}{\sum }}{\beta }_{j}{S}_{C}\left({Y}_{j},{\stackrel{^}{Y}}_{j}\right)$ (5)

1) 建立判断矩阵

$B=\left[\begin{array}{cccc}{b}_{11}& {b}_{12}& \cdots & {b}_{1m}\\ {b}_{21}& {b}_{22}& \cdots & {b}_{2m}\\ ⋮& ⋮& \ddots & ⋮\\ {b}_{m1}& {b}_{m2}& \cdots & {b}_{mm}\end{array}\right]$ (6)

2) 计算各个时间段权重值

3) 判断矩阵一致性

1~9及其倒数中抽取数字构造正互反矩阵，求得最大特征根的平均值 ${{\lambda }^{\prime }}_{\mathrm{max}}$ ，并定义 ${R}_{I}=\frac{{{\lambda }^{\prime }}_{\mathrm{max}}-n}{n-1}$ ，具体推

Table 1. Comparison table of average random consistency index RI

4. 仿真试验与精度分析

4.1. 全电磁暂态数字仿真模型构建

Figure 1. ADPSS full-electromagnetic transient simulation model of East China Power Grid

Figure 2. ADPSS full-electromagnetic transient simulation model of ±1100 kV Changji-Guquan UHVDC transmission system

Figure 3. Comparison of field and simulation waveforms of pole 1 DC voltage at Guquan Station

Figure 4. Comparison of field and simulation waveforms of pole 1 DC current at Guquan Station

4.2. 仿真精度分析

$B=\left[\begin{array}{cccc}1& 1/9& 1/5& 1\\ 9& 1& 3& 9\\ 5& 1/3& 1& 5\\ 1& 1/9& 1/5& 1\end{array}\right]$

$\beta =\left[\begin{array}{cccc}0.0597& 0.6160& 0.2646& 0.0597\end{array}\right]$

${C}_{I}=\left({\lambda }_{\mathrm{max}}-n\right)/\left(n-1\right)=0.0109$

Table 2. Similarity results of pole 1 DC voltage and DC current in Jiquan UHVDC

5. 结论

1) 该方法相较前文介绍的其他精度评估方法，可以使系统分析人员更方便的了解仿真曲线各段与实测值的残差差异程度、变化趋势差异程度，尤其是可以从动态角度掌握曲线变化趋势相似度，为用户修正模型参数提供必要的参考信息。

2) 评估者对残差相似度与形状相似度的偏重不同，得出的仿真精度评估结果也将不同。通过合理设定曲线各段相似度的权重，可以得到更为合理的、符合评估要求的精度评估结果。

NOTES

*通讯作者。

 [1] 张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42(8): 2806-2828. [2] 谢小荣, 贺静波, 毛航银, 等. “双高”电力系统稳定性的新问题及分类探讨[J]. 中国电机工程学报, 2021, 41(2): 461-474. [3] 董毅峰, 王彦良, 韩佶, 等. 电力系统高效电磁暂态仿真技术综述[J]. 中国电机工程学报, 2018, 28(8): 2213-2231. [4] 房钊, 陶顺, 杨洋, 等. 机电-电磁混合仿真精度评估方法研究[J]. 智能电网, 2016, 4(1): 13-19. [5] 柳世考, 刘兴堂, 张文. 利用相似度对仿真系统可信度进行定量评估[J]. 系统仿真学报, 2003, 15(2): 143-145. [6] 焦鹏, 唐建兵, 查亚兵. 仿真可信度评估中相似度方法的改进及其应用[J]. 系统仿真学报, 2007, 19(12): 2658-2660. [7] Han, D. and He, R.M. (2006) Power System Dynamic Simulation Validation Based on Similarity Theory and Analytical Hierarchy Process. 2006 International Conference on Power System Tech-nology, Chongqing, 22-26 October 2006, 1-7. https://doi.org/10.1109/ICPST.2006.321736 [8] 李鹏波, 红卫. 频谱分析方法在仿真可信性研究中的应用[J]. 系统仿真学报, 1998, 10(3): 18-21. [9] 高松, 贺仁睦, 马进. 电力系统动态仿真误差评定准则研究[J]. 电力系统自动化, 2006, 30(4): 6-10. [10] Fan, R., Wu, H.M., Chang, X., et al. (2019) A New Power Prediction Accuracy Evaluation Method of Renewable Energy Plant. 2019 IEEE Sustainable Power and Energy Conference (iSPEC), Beijing, 21-23 November 2019, 610-612. https://doi.org/10.1109/iSPEC48194.2019.8975125 [11] Zhang, J.J., Zhang, X.L., Yao, G.X., et al. (2020) Accuracy Evaluation Method for Electromechanical Transient Model of Dynamic Reactive Power Compensation Device Applied to Renewable Power Station. 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), Beijing, 30 October-1 November 2020, 1303-1306. https://doi.org/10.1109/EI250167.2020.9346894 [12] 周成, 贺仁睦, 王吉利, 等.电力系统元件模型仿真准确度评估[J]. 电网技术, 2009, 33(14): 12-15. [13] Huang, Z.Y., Guttromson, R.T. and Hauer. J.F. (2004) Large-scale Hybrid Dynamic Simulation Employing Field Meas-urements. Proceedings of the IEEE Power Engineering Society General Meeting, Denver, 6-10 June 2004, 1-7. [14] 同济大学数学科学学院. 工程数学-线性代数(第七版) [M]. 北京: 高等教育出版社, 2023: 165-166. [15] Wang, X.X., Guo, C.L., Xiao, X.N., et al. (2010) Research of Analysis Method of Power System Real-time Digital Simulation Error. 2010 5th International Conference on Critical Infrastructure (CRIS), Beijing, 20-22 September 2010, 1-6. https://doi.org/10.1109/CRIS.2010.5617539 [16] Wang, X.X., Guo, C.L., Xiao, X.N. and Zhao, C.Y. (2011) Establish of Accuracy Assessment Indexes of Power System Real-Time Digital Simulation. 2011 Asia-Pacific Power and Energy Engineering Conference, Wuhan, 25-28 March 2011, 978-981. https://doi.org/10.1109/APPEEC.2011.5747744