#### 期刊菜单

SiCp/Al复合材料铣削仿真及实验研究
Simulation and Experimental Study on Milling of SiCp/Al Composites
DOI: 10.12677/MOS.2024.131009, PDF, HTML, XML, 下载: 173  浏览: 218

Abstract: This study aims to investigate the cutting mechanism of the PCD cutting tool when milling SiCp/Al composites with 45% SiCp article volume fractions (PVFs). A two-dimensional orthogonal cutting 45% PVFs SiCp/Al composites finite element simulation model was established to study the cutting re-moval process, surface morphology, and the variation regularity of cutting force under different cutting parameters is analyzed; the orthogonal test method was used to verify the finite element model and the deviation analysis of experimental and simulated cutting force was carried out. The results show that particle fracture, pull-out, and matrix tearing are important factors affecting sur-face morphology. The variation and fluctuation of cutting force obtained by the experiment are con-sistent with the simulation results, and the deviation is less than 20%, which verifies the validity of the finite element model and provides a reference for the subsequent research on tool wear and process optimization.

1. 引言

2. 有限元模型

2.1. 有限元几何模型的建立

Figure 1. Two-dimensional orthogonal cutting SiCp/Al simulation model

2.2. 本构模型及切屑分离准则

(1) Al基体材料

$\sigma =\left[A+B{\in }^{n}\right]\left[1+c\mathrm{ln}\left(\frac{\stackrel{˙}{\epsilon }}{{\stackrel{˙}{\epsilon }}_{0}}\right)\left[1-{\left(\frac{T-{T}_{r}}{{T}_{m}-{T}_{r}}\right)}^{m}\right]\right]$ (1)

Table 1. JC parameters of Al matrix [9]

(2) 增强相SiC颗粒

SiC颗粒是一种不同于Al的脆性材料，在SiCp/Al复合材料的切削过程中容易发生脆性断裂失效现象。因此采用ABAQUS中的脆性断裂模型，对SiC颗粒的断裂失效行为进行模拟。

SiC颗粒在断裂前处于弹性状态，应力–应变关系遵守胡克定律，其断裂开始的判断准则采用最大正应力准则，即：

$\mathrm{max}\left({\sigma }_{1,}{\sigma }_{2,}{\sigma }_{3}\right)={\sigma }_{0}$ (2)

${u}_{no}=2\frac{{G}_{f}^{I}}{{\sigma }_{tu}^{I}}$ (3)

Table 2. Al matrix, SiC particles and PCD cutting tool material properties

(3) 颗粒–基体界面层

${G}^{c}=\frac{1}{2}{\sigma }_{\mathrm{max}}{\delta }_{\mathrm{max}}$ (4)

3. 实验条件与设计

3.1. 实验条件

Figure 2. Experimental device diagram

Table 3. Material composition of different VFs SiCp/Al composites

Table 4. Mechanical properties of different VFs SiCp/Al composites

3.2. 实验设计与方法

Table 5. Milling parameter setting

4. 结果与分析

4.1. 仿真结果分析

4.1.1. 切削去除过程

(a) 塑性去除 (b) 应力集中(c) 颗粒破碎 (d) 颗粒相互作用

Figure 3. Simulation of cutting removal process

4.1.2. 仿真表面形貌

Figure 4. Surface topography in simulation

4.1.3. 切削速度对表面形貌和切屑形成的影响

(a) Vc = 250 m/min, ap = 0.1 mm

(b) Vc = 300 m/min, ap = 0.1 mm(c) Vc = 350 m/min, ap = 0.1 mm

Figure 5. Surface topography and chip morphology at different cutting speed

4.1.4. 进给深度对表面形貌和切屑形成的影响

(a) Vc = 300 m/min, ap = 0.1 mm

(b) Vc = 300 m/min, ap = 0.2 mm(c) Vc = 300 m/min, ap = 0.3 mm

Figure 6. Surface topography and chip morphology at different feed depth

4.2. 切削力分析

Table 6. Deviation table of 45% SiCp/Al cutting force experimental and simulation value

Figure 7. Related curve between feed depth and cutting force (Vc = 300 m/min)

Figure 8. Related curve between cutting speed and cutting force (ap = 0.2 mm)

5. 结论

(1) 颗粒破碎、凹坑、基体撕裂是影响表面形貌的重要因素，在实际加工中应采用较高的切削速度和较小的进给深度。

(2) 切削力与切削速度，进给深度呈正相关，进给深度对切削力的影响更加显著。

(3) 通过切削力实验值和仿真值偏差分析，验证了模型的准确性，进而为研究刀具磨损、加工表面完整性提供参考。

 [1] Niu, Z. and Cheng, K. (2016) Multiscale Multiphysics-Based Modeling and Analysis on the Tool Wear in Micro Drilling. Journal of Multiscale Modelling, 7, Article ID: 1640002. https://doi.org/10.1142/S1756973716400023 [2] Chen, J.P., Gu, L. and He, G.J. (2020) A Review on Conventional and Nonconventional Machining of SiC Particle-Reinforced Aluminium Matrix Composites. Advances in Manufacturing, 8, 279-315. https://doi.org/10.1007/s40436-020-00313-2 [3] 李敏, 王爱琴, 谢敬佩, 等. SiC颗粒增强Al基复合材料的研究现状与进展[J]. 粉末冶金工业, 2015, 25(3): 55-60. [4] 靳杰. SiCp/Al复合材料铣削刀具参数优选及低温微量润滑试验研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨理工大学, 2021. [5] Huang, S.T. and Zhou, L. (2011) Evaluation of Tool Wear When Milling SiCp/Al Composites. Key Engineering Materials, 455, 226-231. https://doi.org/10.4028/www.scientific.net/KEM.455.226 [6] 王进峰, 储开宇, 赵久兰, 范孝良. SiCp/Al复合材料切削仿真及实验研究[J]. 人工晶体学报, 2016, 45(7): 9. [7] Zhou, L., Cui, C., Zhang, P.F., et al. (2017) Finite Element and Experimental Analysis of Machinability during Machining of High-Volume Fraction SiCp/Al Composites. The International Journal of Advanced Manufacturing Technology, 91, 1935-1944. https://doi.org/10.1007/s00170-016-9933-1 [8] Zhou, Y., Gu, Y., Lin, J., et al. (2022) Finite Element Analysis and Experimental Study on the Cutting Mechanism of SiCp/Al Com-posites by Ultrasonic Vibration-Assisted Cutting. Ceramics International, 48, 35406-35421. https://doi.org/10.1016/j.ceramint.2022.08.142 [9] Liu, J., Cheng, K., Ding, H., et al. (2016) An Investigation of Surface Defect Formation in Micro Milling the 45% SiCp/Al Composite. Procedia CIRP, 45, 211-214. https://doi.org/10.1016/j.procir.2016.02.327 [10] 武永祥. SiCp/Al复合材料切削仿真研究与实验验证[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2018.