|
[1]
|
卵巢储备功能减退临床诊治专家共识[J]. 生殖医学杂志, 2022, 31(4): 425-434.
|
|
[2]
|
Zhou, Z., Zhou, Z., Zhou, Z., Zheng, D. and Zheng, D. (2017) Epidemiology of Infertility in China: A Population-Based Study. BJOG: An Interna-tional Journal of Obstetrics and Gynaecology, 125, 432-441. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Harris, B.S., et al. (2023) Markers of Ovarian Reserve as Predictors of Future Fertility. Fertility and Sterility, 119, 99-106. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Wang, X.F., Wang, L.J. and Xiang, W.P. (2023) Mechanisms of Ovarian Aging in Women: A Review. Journal of Ovarian Re-search, 16, Article No. 67. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Park, S.Y., et al. (2021) The Associ-ation of Ovarian Reserve with Exposure to Bisphenol A and Phthalate in Reproductive-Aged Women. Journal of Korean Medical Science, 36, e1. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Tal, R. and Seifer, D.B. (2017) Ovarian Re-serve Testing: A User’s Guide. American Journal of Obstetrics and Gynecology, 217, 129-140. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Meng, Q.-Q., et al. (2013) A Systematic Review of Infertility Rates among Couples of Childbearing Age in China. Chinese Journal of Epidemiology, 34, 826-831.
|
|
[8]
|
Dogan, S., et al. (2021) The Effect of Growth Hormone Adjuvant Therapy on Assisted Reproductive Technologies Outcomes in Patients with Diminished Ovarian Reserve or Poor Ovarian Response. Journal of Gynecology Obstetrics and Human Reproduc-tion, 50, Article ID: 101982. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Pastore, L.M., et al. (2018) Repro-ductive Ovarian Testing and the Alphabet Soup of Diagnoses: DOR, POI, POF, POR, and FOR. Journal of Assisted Reproduction and Genetics, 35, 17-23. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Ferraretti, A.P., et al. (2011) ESHRE Consensus on the Definition of “Poor Response” to Ovarian Stimulation for in Vitro Fertilization: The Bologna Criteria. Human Reproduction (Oxford, England), 26, 1616-1624. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Tobler, K.J., Shoham, G., Christianson, M.S., Zhao, Y.L. and Leong, M. (2015) Use of Anti-Mullerian Hormone for Testing Ovarian Reserve: A Survey of 796 Infertility Clinics Worldwide. Journal of Assisted Reproduction and Genetics, 32, 1441-1448. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Committee on Gynecologic Practice (2017) Committee Opinion No. 698: Hormone Therapy in Primary Ovarian Insufficiency. Obstetrics & Gynecology, 129, e134. [Google Scholar] [CrossRef]
|
|
[13]
|
Tamura, H., Takasaki, A., Taketani, T., et al. (2012) The Role of Melatonin as an Antioxidant in the Follicle. Journal of Ovarian Research, 5, Article No. 5. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Ozkaya, M.O. and Naziroglu, M. (2010) Multivitamin and Mineral Supplementation Modulates Oxidative Stress and Antioxidant Vitamin Levels in Serum and Follicular Fluid of Women Undergoing in Vitro Fertilization. Fertility and Sterility, 94, 2465-2466. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Silva, C.A., Yamakami, L.Y., Aikawa, N.E., et al. (2014) Au-toimmune Primary Ovarian Insufficiency. Autoimmunity Reviews, 13, 427-430. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Schwarze, J.E., Borda, P., Vásquez, P., et al. (2018) Is the Risk of Preeclampsia Higher in Donor Oocyte Pregnancies? A Systematic Review and Meta-Analysis. JBRA Assisted Repro-duction, 22, 15-19. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Peng, Y.L. (2015) Clinical Study on Treatment of Diminished Ovarian Reserve by Nourishing Kidney and Essence Treatment. Journal of Traditional Chinese Medicine, 21, 70-72.
|
|
[18]
|
Orisaka, M., et al. (2021) The Role of Pituitary Gonadotropins and Intraovarian Regulators in Follicle De-velopment: A Mini-Review. Reproductive Medicine and Biology, 20, 169-175. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Hsueh, A.J., Kawamura, K., Cheng, Y. and Fauser, B.C. (2015) In-traovarian Control of Early Folliculogenesis. Endocrine Reviews, 36, 1-24. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Pepling, M.E. (2006) From Primordial Germ Cell to Primordial Follicle: Mammalian Female Germ Cell Development. Genesis (New York, N.Y.: 2000), 44, 622-632. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Park, S.U., et al. (2021) Mechanisms of Ovarian Aging. Reproduction (Cambridge, England), 162, R19-R33. [Google Scholar] [CrossRef]
|
|
[22]
|
Richardson, S.J. and Nelson, J.F. (1990) Follicular Depletion during the Menopausal Transition. Annals of the New York Academy of Sciences, 592, 13-20. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Paauw, D.S. (2015) Foreword. Medical Clinics of North America, 99, 15. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Hansen, K.R., Knowlton, N.S., Thyer, A.C., Charleston, J.S., Soules, M.R. and Klein, N.A. (2008) A New Model of Reproductive Aging: The Decline in Ovarian Non-Growing Follicle Number from Birth to Menopause. Human Reproduction, 23, 699-708. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Chiang, J.L., Shukla, P., Pagidas, K., Ahmed, N.S., Karri, S., Gunn, D.D., et al. (2020) Mitochondria in Ovarian Aging and Reproductive Longevity. Ageing Research Reviews, 63, Article ID: 101168. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Mikwar, M., MacFarlane, A.J. and Marchetti, F. (2020) Mecha-nisms of Oocyte Aneuploidy Associated with Advanced Maternal Age. Mutation Research-Reviews in Mutation Re-search, 785, Article ID: 108320. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Moghadam, A.R.E., Moghadam, M.T., Hemadi, M. and Saki, G. (2022) Oocyte Quality and Aging. JBRA Assisted Reproduction, 26, 105-122. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Lliberos, C., Liew, S.H., Zareie, P., La Gruta, N.L. and Mansell, A. (2021) Evaluation of Inflammation and Follicle Depletion during Ovarian Ageing in Mice. Scientific Reports, 11, Arti-cle No. 278. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Holton, R.A., Harris, A.M., Mukerji, B., Singh, T. and Dia, F. (2020) CHTF18 Ensures the Quantity and Quality of the Ovarian Reserve. Biology of Reproduction, 103, 24-35. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Chiang, T., Schultz, R.M. and Lampson, M.A. (2011) Age-Dependent Susceptibility of Chromosome Cohesion to Premature Separase Activation in Mouse Oocytes. Biology of Reproduction, 85, 1279-1283. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Rattani, A., Wolna, M., Ploquin, M., Helmhart, W. and Mor-rone, S. (2013) Sgol2 Provides a Regulatory Platform That Coordinates Essential Cell Cycle Processes during Meiosis I in Oocytes. eLife, 2, e01133. [Google Scholar] [CrossRef]
|
|
[32]
|
Treff, N.R., Su, J., Taylor, D. and Scott, R.T. (2011) Telomere DNA De-ficiency Is Associated with Development of Human Embryonic Aneuploidy. PLOS Genetics, 7, e1002161. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Gleicher, N., Yu, Y., Himaya, E., Barad, D.H. and Weghofer, A. (2015) Early Decline in Functional Ovarian Reserve in Young Women with Low (CGGn < 26) FMR1 Gene Alleles. Translational Research: The Journal of Laboratory and Clinical Medicine, 166, 502-507.e1-2. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Hua, K., Wang, L., Sun, J., Zhou, N., Zhang, Y., Ji, F., et al. (2020) Impairment of Pol Beta-Related DNA Base-Excision Repair Leads to Ovarian Aging in Mice. Aging (Albany NY), 12, 25207-25228. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Rinaldi, V.D., Bloom, J.C., Bloom, J.C. and Schimenti, J.C. (2020) Oocyte Elimination through DNA Damage Signaling from CHK1/CHK2 to p53 and p63. Genetics, 215, 373-378. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Saccon, T.D., Rovani, M.T., Garcia, D.N., Mondadori, R.G., Cruz, L.A.X., Barros, C.C., et al. (2020) Primordial Follicle Reserve, DNA Damage and Macrophage Infiltration in the Ovaries of the Long-Living Ames Dwarf Mice. Experimental Gerontology, 132, Article ID: 110851. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Saccon, T.D., Rovani, M.T., Garcia, D.N., Pradiee, J., Mon-dadori, R.G., Cruz, L.A.X., et al. (2022) Growth Hormone Increases DNA Damage in Ovarian Follicles and Macro-phage Infiltration in the Ovaries. Geroscience, 44, 1071-1081. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Rizzo, A., Roscino, M.T., Binetti, F. and Sciorsci, R.L. (2011) Roles of Reactive Oxygen Species in Female Reproduction. Reproduction in Domestic Animals, 47, 344-352. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Kim, J., Kim, J., Seli, E. and Seli, E. (2019) Mitochondria as a Biomarker for IVF Outcome. Reproduction (Cambridge, England), 157, R235-R242. [Google Scholar] [CrossRef]
|
|
[40]
|
Shi, L.Y., Zhang, J.J., Lai, Z.W., Tian, Y. and Fang, L. (2016) Long-Term Moderate Oxidative Stress Decreased Ovarian Reproductive Function by Reducing Follicle Quality and Pro-gesterone Production. PLOS ONE, 11, e0162194. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Richardson, M.C., Guo, M., Fauser, B.C. and Macklon, N.S. (2013) Environmental and Developmental Origins of Ovarian Reserve. Human Reproduction Update, 20, 353-369. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Shen, J., et al. (2020) Urinary Bisphenol A Concentration Is Corre-lated with Poorer Oocyte Retrieval and Embryo Implantation Outcomes in Patients with Tubal Factor Infertility Under-going in Vitro Fertilisation. Ecotoxicology and Environmental Safety, 187, Article ID: 109816. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Almeida, S., Raposo, A., Almeida-González, M. and Carrascosa, C. (2018) Bisphenol A: Food Exposure and Impact on Human Health. Comprehensive Reviews in Food Science and Food Safety, 17, 1503-1517. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Koch, H.M., Kolossa-Gehring, M., Schröter-Kermani, C., Angerer, J. and Brüning, T. (2012) Bisphenol A in 24 h Urine and Plasma Samples of the German Environmental Specimen Bank from 1995 to 2009: A Retrospective Exposure Evaluation. Journal of Exposure Science & Environmental Epidemiology, 22, 610-616. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Cui, F.-P., Yang, P., Liu, C., Chen, P.-P. and Deng, Y.-L. (2021) Urinary Bisphenol A and Its Alternatives among Pregnant Women: Predictors and Risk Assessment. The Science of the Total En-vironment, 784, Article ID: 147184. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Tang, C.F., Zhang, J., Liu, P.Y., Zhou, Y. and Hu, Q.Y. (2020) Chronic Exposure to Low Dose of Bisphenol A Causes Follicular Atresia by Inhibiting Kisspeptin Neurons in Anteroventral Periventricular Nucleus in Female Mice. Neurotoxicology, 79, 164-176. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Cabaton, N.J., Wadia, P.R., Rubin, B.S., Zalko, D. and Schaeberle, C.M. (2010) Perinatal Exposure to Environmentally Relevant Levels of Bisphenol A Decreases Fertility and Fecundity in CD-1 Mice. Environmental Health Perspectives, 119, 547-552. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Huang, M.Q., Liu, S., Fu, L., Jiang, X. and Yang, M. (2020) Bisphenol A and Its Analogues Bisphenol S, Bisphenol F and Bisphenol AF Induce Oxidative Stress and Biomacromolecular Damage in Human Granulosa KGN Cells. Chemosphere, 253, Article ID: 126707. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Zhang, N.X., Zhao, Y.N., Zhai, L.L., Bai, Y.L. and Jia, L.H. (2023) Urinary Bisphenol A and S Are Associated with Diminished Ovarian Reserve in Women from an Infertility Clinic in Northern China. Ecotoxicology and Environmental Safety, 256, Article ID: 114867. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Gnaneswaran, S., Deans, R. and Cohn, R.J. (2012) Reproduc-tive Late Effects in Female Survivors of Childhood Cancer. Obstetrics and Gynecology International, 2012, Article ID: 564794. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Stern, E., Stern, E., Ben-Ami, M., Ben-Ami, M. and Gruber, N. (2023) Hypothalamic-Pituitary-Gonadal Function, Pubertal Development, and Fertility Outcomes in Male and Female Medulloblastoma Survivors: A Single-Center Experience. Neuro-Oncology, 25, 1345-1354. [Google Scholar] [CrossRef] [PubMed]
|