期刊菜单

The Rotation Speed of Galaxies Derived from the Modified Gravity Formula Is Independent of Dark Matter
DOI: 10.12677/AAS.2023.114004, PDF, HTML, XML, 下载: 206  浏览: 402

Abstract: Matter is composed of nucleons (the collective name for protons and neutrons). Each nucleon emits a large number of gravitons. The gravitons emitted by the nucleons inside the planet are absorbed by other nucleons inside the planet, forming cohesion within the planet. The nucleons emitted by the planet’s shell. Some of the gravitons are emitted outside the ball and propagate in the form of gravitational energy waves to form a gravitational field. When the gravitational energy waves en-counter the nuclei of other planets in the gravitational field, they resonate with them to form energy transfer. At this time, the gravitons are encountered by them. The nucleon absorption forms the gravitational force. Gravity is determined by the number of gravitons emitted from the core of the planet’s shell to the outside of the ball, and the number of gravitons is proportional to the surface area of the planet. Therefore, the gravity of the planet is proportional to the surface area of the planet. In the formula of universal gravitation, gravity is proportional to the mass of the planet. In the planet and Galaxy is only an approximation. Generally, galaxies have a disk-shaped structure. In the simulation of the rotation speed of the galaxy, the gravitational force exerted by the planets in the galaxy is related to the side area of the disk-shaped structure. Based on this analysis, this article deduces and calculates the rotation speed of the galaxy V = (0.5GDH)0.5, indicating that the rotation speed of a galaxy has nothing to do with the distance between the planets in the galaxy and the center of the galaxy, but is related to the thickness of the galaxy disk. For a specific galaxy, the rota-tion speed of the galaxy is basically constant. It also shows that dark matter does not need to be in-volved in the rotation speed of the galaxy. For spiral galaxies and barred spiral galaxies with spiral arms, the rotation speed of the galaxy will fluctuate up and down with the spiral arms; for galaxies with few stars like the solar system, the conclusion of this article does not apply. As for the rotation speed of different galaxies, in addition to being related to the thickness of the galactic disk, it should be related to the density of the galaxy’s matter.

1. 暗物质和牛顿修正动力学学说(MOND)

$F=m\mu \left(a/{a}_{0}\right)a$ (1)

${a}^{2}\approx {a}_{N}{a}_{0}\approx \frac{GM{a}_{0}}{{r}^{2}}$ (2)

${v}^{2}=ra\approx {\left(GM{a}_{0}\right)}^{1/2}$${v}^{4}\approx GM{a}_{0}$ (3)

2. 星系旋转速度和星系的模型

Figure 1. Disc-shaped galaxy

Figure 2. Rotation velocity curve of neighboring galaxies 1

Figure 3. Rotation velocity curve of neighboring galaxies 2

3. 偏转引力理论和修正引力公式下的星系旋转速度

3.1. 偏转引力理论简介

$\lambda =\text{2}{r}_{\text{0}}=1.6×{10}^{-15}\text{\hspace{0.17em}}\text{m}$ (4)

$f=\frac{c}{\lambda }=\frac{3×{10}^{8}}{1.6×{10}^{-15}}=1.875×{10}^{23}\text{\hspace{0.17em}}\text{hz}$ (5)

$T=\frac{1}{f}=5.33×{10}^{-24}\text{\hspace{0.17em}}\text{s}$ (6)

${n}_{ng}=6.318×{10}^{21}$ (7)

${r}_{so}=\frac{{k}_{s\rho }}{{\rho }_{s}}$ (8)

${k}_{s\rho }=\text{22956}$ (9)

${n}_{go}={k}_{sr}{r}_{s}^{2}$ (10)

${k}_{sr}=\text{2}\text{.514}×{\text{10}}^{\text{54}}$ (11)

$F={G}_{S}\frac{{S}_{1}{S}_{2}}{{R}^{2}}$ (12)

$F={G}_{r}\frac{{r}_{1}^{2}{r}_{2}^{2}}{{R}^{2}}$ (13)

3.2. 星系和星系中星球的引力和旋转速度

Figure 4. Schematic diagram of gravitational action in the galaxy 1

${S}_{1}=2\pi {r}_{1}H$ (14)

${F}_{2}={G}_{S}\frac{2\pi {r}_{1}H\cdot {m}_{2}}{4\pi {R}^{2}}={G}_{S}\frac{{r}_{1}H\cdot {m}_{2}}{2{R}^{2}}$ (15)

${F}_{2}={m}_{2}\frac{{v}_{2}^{2}}{R}$ (16)

${v}_{2}=\sqrt{{G}_{S}\frac{{r}_{1}H\cdot {m}_{2}}{2{R}^{2}}\frac{R}{{m}_{2}}}=\sqrt{{G}_{S}\frac{{r}_{1}H}{2R}}$ (17)

${v}_{2}=\sqrt{0.5{G}_{S}H}$ (18)

$H={H}_{\mathrm{max}}\left(1-{\text{e}}^{-\frac{{r}_{1}}{\sigma }}\right)$ (19)

H带入为：

${v}_{2}=\sqrt{0.5{G}_{S}{H}_{\mathrm{max}}\left(1-{\text{e}}^{-\frac{{r}_{1}}{\sigma }}\right)}$ (20)

3.3. 影响星系旋转速度的其他因素

3.3.1. 星系互绕的影响

${F}_{1}={G}_{S}\frac{{S}_{1}{m}_{2}}{2\pi R}={G}_{S}\frac{2\pi {r}_{1}H\cdot {m}_{2}}{2\pi R}={G}_{S}\frac{{r}_{1}H\cdot {m}_{2}}{R}$ (21)

${v}_{1}=\sqrt{\frac{{F}_{1}R}{{m}_{2}}}=\sqrt{{G}_{S}\frac{{r}_{1}H\cdot {m}_{2}}{R}\frac{R}{{m}_{1}}}=\sqrt{{G}_{S}\frac{{r}_{1}H\cdot {m}_{2}}{{m}_{1}}}$ (22)

3.3.2. 星系剩余质量的影响

$f\left(x\right)=\frac{1}{\sqrt{2\pi }\sigma }{\text{e}}^{-\frac{{x}^{2}}{2{\sigma }^{2}}}$ (23)

Figure 5. Schematic diagram of residual mass equivalence of galaxies

$\mathrm{sin}\alpha =\frac{{r}_{2}}{R}$ (24)

${m}_{3}=\frac{2\alpha }{2\pi }\left(m-{m}_{1}-{m}_{2}\right)$ (25)

${R}_{2}\approx \frac{1}{3}\left({R}_{\mathrm{max}}-R-{r}_{2}\right)$ (26)

$\pi {r}_{3}^{2}\rho ={m}_{3}$ (27)

${r}_{3}=\sqrt{\frac{{m}_{3}}{\pi \rho }}$ (28)

${F}_{3}={G}_{S}\frac{{S}_{2}{S}_{3}}{4\pi {R}_{2}^{2}}={G}_{S}\frac{{m}_{2}\cdot 2\pi {r}_{3}H}{4\pi {R}_{2}^{2}}={G}_{S}\frac{{m}_{2}\cdot {r}_{3}H}{2{R}_{2}^{2}}$ (29)

Figure 6. Schematic diagram of the gravitational effect of the galaxy 2

3.4. 星系旋转速度及其影响因素的数据模拟

Table 1. Digital simulation table of galaxy rotation speed

Figure 7. Simulation effect of galaxy rotation speed

4. 讨论

5. 结论

$v=\sqrt{0.5{G}_{S}{H}_{\mathrm{max}}\left(1-{\text{e}}^{-\frac{r}{\sigma }}\right)}$

 [1] 百度百科. 暗物质[EB/OL]. https://baike.baidu.com/item/%E6%9A%97%E7%89%A9%E8%B4%A8/8666?fr=ge_ala, 2023-11-20. [2] 张新民. 粒子物理和宇宙学中的两片乌云——谈暗物质和暗能量[J]. 物理, 2011, 40(1): 8-12. [3] 许槑. 暗物质与暗能量[J]. 物理通报, 2004(2): 1-3。 [4] 常进. 暗物质粒子探测: 意义、方法、进展及展望[J]. 工程研究-跨学科视野中的工程, 2010, 2(2): 95-99. https://doi.org/10.3724/SP.J.1224.2010.00095 [5] 袁强. 宇宙中的幽灵——暗物质[J]. 现代物理知识, 2008, 20(5): 3-6. [6] 陈学雷. 一对竞争的科学理论: 暗物质与修改引力理论[EB/OL]. https://mp.weixin.qq.com/s/VP7rg8uRDL5a8ckuLVaQYA, 2023-11-20. [7] 邓雪梅. 修正牛顿定律? [J]. 世界科学, 2008(2): 18-19. [8] Seshavatharam, U.V.S. and Lakshminarayana, S. (2014) On Galaxy Rotation Curves & Galactic Radial Distances in Black Hole Cosmology. Prespacetime Journal, 5, 815-828. [9] Hartnett, J.G. (2005) The Carmeli Metric Correctly Describes Spiral Galaxy Rotation Curves. International Journal of Theoretical Physics, 44, 349-362. https://doi.org/10.1007/s10773-005-3366-1 [10] 百度百科. 银河系[EB/OL]. https://baike.baidu.com/item/%E9%93%B6%E6%B2%B3%E7%B3%BB/189795?fr=ge_ala, 2023-11-20. [11] 苏宜. 天文学新概论[M]. 第五版. 北京: 科学出版社, 2019: 206-210. [12] 杨梦. 星系的旋转曲线及动力学性质[D]: [硕士学位论文]. 北京: 清华大学, 2016. [13] 陈俊意. 旋转星系速度平坦的数学原理[J]. 科学咨询, 2019(33): 41-43 [14] Grand, R.J.J., Kawata, D. and Cropper, M. (2012) Dynamics of Stars around Spiral Arms in an N-bodySPH Simulated Barred-Spiral Galaxy. Monthly Notices of the Royal Astronomical Society, 426, 167-180. https://doi.org/10.1111/j.1365-2966.2012.21733.x [15] 凇茗茗. 星系旋转曲线与质量分布的探索: 解密星系内部的引力之谜[EB/OL]. https://baijiahao.baidu.com/s?id=1771086781607918406&wfr=spider&for=pc, 2023-07-11. [16] 刘天天. 首发于天体物理, 不存在的暗物质(简明篇)——研究银河系旋转曲线[EB/OL]. https://zhuanlan.zhihu.com/p/450903858, 2023-11-20. [17] 陈军利, 康耀辉. 引力、引力场和引力子——关于引力能量波频率的推断[J]. 天文与天体物理, 2022, 10(1): 1-10. https://doi.org/10.12677/AAS.2022.101001 [18] 陈军利. 引力是如何产生的?——引力线在偏转物体的运动方向[J]. 天文与天体物理, 2022, 10(2): 11-24. https://doi.org/10.12677/AAS.2022.102002 [19] 陈军利. 引力线在偏转物体运动方向分析[EB/OL]. 中文科技期刊数据库(全文版)自然科学, 2023: 52-57. http://cqvip.com/QK/72191X/202308/epub1000003854924.html, 2023-11-20. [20] 陈军利. 论核力是引力在微观距离上的表现[J]. 现代物理, 2023, 13(5): 113-124. https://doi.org/10.12677/MP.2023.135012 [21] 陈军利, 康耀辉. 由星球发射到球外引力子的比例修正万有引力公式的尝试——偏转引力理论之球外引力子比例[J]. 天文与天体物理, 2023, 11(3): 27-39. https://doi.org/10.12677/AAS.2023.113003