肿瘤诊治新视角:血液炎症指标的临床应用与研究进展
New Perspectives in the Diagnosis and Treatment of Tumor: Clinical Applications and Research Progress of Blood Inflammatory Indicators
摘要: 在肿瘤的诊断与治疗领域,血液炎症指标作为评价患者免疫与炎症状态的重要工具,已逐渐显现其临床价值。中性粒细胞与淋巴细胞比值(Neutrophil to Lymphocyte Ratio, NLR)、血小板与淋巴细胞比值(Platelet to Lymphocyte Ratio, PLR)以及全身免疫炎症指数(Systemic Immune-Inflammation Index, SII)等指标可用于评估患者的免疫和炎症状况。近年来,学者们发现血液炎症指标与恶性肿瘤的发病、进展和预后密切相关。本文从诊断、预后评估、治疗疗效监测和免疫炎症反应评估等方面,对血液炎症指标在恶性肿瘤中的应用及研究进展进行综述,旨在为肿瘤临床诊治提供新的视角和实践依据。
Abstract: In the field of tumor diagnosis and treatment, blood inflammatory indicators have become an im-portant tool for evaluating the immune and inflammatory status of patients, and their clinical value is gradually being recognized. Indicators such as the Neutrophil to Lymphocyte Ratio (NLR), Platelet to Lymphocyte Ratio (PLR), and the Systemic Immune-Inflammation Index (SII) can be used to as-sess the immune and inflammatory status of patients. In recent years, researchers have found that blood inflammatory indicators are closely related to the incidence, progression, and prognosis of malignant tumors. This article reviews the application and research progress of blood inflammatory indicators in malignant tumors from the aspects of diagnosis, prognostic evaluation, monitoring therapeutic efficacy, and assessing immune-inflammatory responses, with the aim of providing new perspectives and practical evidence for the clinical diagnosis and treatment of cancer.
文章引用:肖雨, 齐洪志. 肿瘤诊治新视角:血液炎症指标的临床应用与研究进展[J]. 临床医学进展, 2024, 14(1): 945-953. https://doi.org/10.12677/ACM.2024.141135

1. 引言

据统计,癌症是目前全球范围内主要的死亡原因之一。尤为令人关注的是,恶性肿瘤的发病率在近年来呈现出持续增长的趋势 [1] 。因此,癌症已经成为公共卫生领域全球性的重点关注疾病,与人类生命质量和生活质量密切关联。关于癌症与炎症的关联,最早可追溯于19世纪病理学家鲁道夫·维尔科首次观察到肿瘤中存在白细胞浸润,提出炎症可能促进癌症的假说 [2] 。直至最近数十年,随着生物医学技术的发展和对于肿瘤微环境更深入的理解,研究者们发现局部和全身炎症反应与多种肿瘤的发生、发展和转移之间都存在着密切的关系。在肿瘤微环境中,炎症细胞的作用尤为关键,它们参与并调节肿瘤的形成、发展以及治疗敏感性 [3] 。

在本篇综述中,我们将深入探讨各类免疫细胞及其相关标志物在肿瘤发病机制和肿瘤演变过程中的重要作用,并对其在肿瘤的诊断、预后评估、治疗效果监测以及免疫炎症反应评估等方面的显著价值展开详尽论述。

2. 中性粒细胞与肿瘤

中性粒细胞是体内占比最多的白细胞类型之一,它们是免疫系统中的第一道防线,最先响应机体的感染和损伤 [4] 。中性粒细胞通过分泌各类炎症因子、免疫调控因子及血管生成因子,进而影响肿瘤的发展过程,包括中性粒细胞弹性蛋白酶、基质金属蛋白酶(Matrix Metalloproteinases, MMP)、血管内皮生长因子(Vascular Endothelial Growth Factor, VEGF)和肝细胞生长因子(Hepatocyte Growth Factor, HGF)等 [5] 。中性粒细胞弹性蛋白酶与MMP这两种酶具有分解细胞外基质的能力,它们通过改变肿瘤细胞周围的微环境,进一步影响到细胞行为,包括细胞迁移,增殖等过程,并在肿瘤侵袭及转移过程中发挥关键作用。HGF与VEGF可以共同参与刺激血管生成,为肿瘤细胞的生长提供足够的氧气和营养 [6] 。在肝细胞癌治疗领域,患者治疗前外周血中性粒细胞计数与其预后独立相关,中性粒细胞的升高提示了总生存期的降低,与此同时,中性粒细胞计数与诸多不良预后因素关联紧密,包括肿瘤直径较大、血管浸润、肝外转移等 [7] 。另有研究发现,在肺癌患者中,外周血中性粒细胞计数通常高于健康对照组,外周血中性粒细胞(AUC = 0.717)可作为肺癌的独立诊断标志物 [8] 。值得注意的是,中性粒细胞在某些情况下,也会表现出抗瘤效应 [9] 。它们可以杀死肿瘤细胞或者通过调节免疫应答杀伤肿瘤。中性粒细胞在肿瘤微环境中的具体作用取决于多种因素,包括肿瘤的类型、发展阶段以及微环境的特性等 [10] 。

3. 淋巴细胞与肿瘤

淋巴细胞是免疫系统中的重要细胞成分,对于身体的免疫防御有着关键作用,其中T细胞在细胞免疫反应中起关键作用,特别是CD8+ T细胞,它们被广泛称呼为细胞毒性T细胞(Cytotoxic T Lymphocytes, CTLs),能识别并杀死体内的肿瘤细胞 [11] 。当CD8+ T细胞识别和结合到抗原后,它可以分泌包含在毒性颗粒中的酶类,如颗粒酶B和外泌酶,这些酶类可以调控细胞凋亡程序,引起肿瘤细胞死亡 [12] 。此外,CD8+ T细胞还能分泌一些细胞因子如干扰素-γ和肿瘤坏死因子-α等,它们不仅能进一步提升免疫反应的效力,还可能直接推动细胞的死亡过程 [13] 。同时,CD4+辅助性T细胞具有能力主动调节抗原呈递细胞的功能,将其转化为能够有效激活CTL前体的刺激因子,协助促进CTLs的活性。这有助于建立起一种高效而持久的抗肿瘤免疫力 [14] [15] 。

4. 血小板与肿瘤

血小板又被称为血栓细胞,主要功能是参与机体的血液凝固和伤口修复。近期的研究揭示,血小板可通过多种机制参与癌症的发生和发展 [16] [17] 。Nieswandt等人首次证明血小板如何通过包裹肿瘤细胞来保护它们免遭包括自然杀伤细胞在内的免疫系统的杀伤,从而促进转移 [18] 。另外,血小板能释放一系列的生长因子刺激新血管的形成,为肿瘤提供必须的营养支持 [19] [20] 。血小板及其粘附受体对肿瘤细胞在远离原发部位的器官中粘附和渗出方面确实发挥了重要的促进作用。血小板膜上存在多种具有黏附功能的分子,它们在这一过程中扮演关键角色 [21] 。这些粘附分子包括整合素、GPIb-IX-V复合物、糖蛋白VI和C型凝集素样受体2和P-选择素 [22] 。整合素作为细胞间黏附的核心关键分子,能够与许多细胞外基质成分互相作用,从而影响肿瘤细胞的迁移、侵袭和转移 [23] 。GPIb-IX-V复合物等是血小板上的另一类重要受体,它们参与血小板的激活和聚集过程,进而对肿瘤细胞的黏附产生促进作用 [24] 。此外,P-选择素在肿瘤细胞与血小板、内皮细胞之间的相互作用中发挥关键作用,有助于整个过程的进行 [25] 。血小板计数在某些情况下可以作为肿瘤的一个预后因素,Miao等人的研究揭示了血小板能够外渗到肿瘤基质中并在其中浸润,与肿瘤微环境产生相互作用。这种现象会进一步影响结肠癌患者的病情,使得他们的术后总存活期(Overall Survival, OS)和无病生存期(Disease-Free Survival, DFS)降低 [26] 。

5. NLR、PLR、SII与肿瘤的研究进展

NLR、PLR和SII是血液中常见的炎症相关参数,它们在许多研究中被认为能够反映机体的炎症和免疫状态。近年来它们作为综合性的免疫炎症指数在肿瘤学领域中的临床意义也受到关注,在恶性肿瘤的诊断、预后评估、治疗疗效监测和免疫炎症反应评估方面具有重要价值。

5.1. 头颈部恶性肿瘤

头颈部肿瘤是指发生在头颈部区域的一组不同肿瘤类型,包括鼻咽癌、喉癌、口腔癌、鼻腔与鼻窦癌、甲状腺癌以及唾液腺癌等,尽管这些肿瘤起源于不同的解剖部位,但它们的某些病理生理特性和治疗原则有着相似之处 [27] 。一项对比鼻咽癌患者与健康人群的研究揭示了显著的差异,在鼻咽癌患者群体中,NLR和PLR的数值显著高于健康对照组。更进一步的分析表明,NLR数值与淋巴结转移及TNM分期之间存在正相关性,这表明随着鼻咽癌恶化,NLR有着显著的增高趋势,从而指示了其作为判断疾病严重程度的潜在生物标志物的可行性。同时,PLR值与浆膜浸润呈正相关,这进一步强调了这两种指标在指导鼻咽癌的临床病理分期中的潜在价值 [28] 。另有针对炎症指标对于鼻咽癌预后的研究,证实治疗前高水平的PLR、NLR和SII与鼻咽癌不佳的OS密切相关,且SII的预后价值大于NLR与PLR,成为预测鼻咽癌患者预后的新的独立因素 [29] 。淋巴结转移是头颈部鳞癌与甲状腺乳头状癌最常见的转移形式之一,并且对预后有显著影响,目前常用影像学手段评估肿瘤的转移淋巴结。随着血液指标在癌症诊断中的广泛应用,这些指标在预测颈部淋巴结转移方面的潜力也逐渐被发现,在头颈部鳞状细胞癌的早期阶段,即临床上未显示淋巴结转移(cN0)情况下,治疗前的外周血标志物,特别是 NLR,已被证实是一个可靠的预测因子来预测潜在的颈部淋巴结微小转移 [30] 。对于甲状腺乳头状癌患者来说,肿瘤直径和术前SII是预测侧颈淋巴结转移的独立风险因素。基于SII和肿瘤直径建立的预测模型可有效辅助判断甲状腺乳头状癌患者是否会发生侧颈淋巴结转移,从而为患者提供更精准的诊断和治疗计划 [31] 。

5.2. 肺恶性肿瘤

肺癌是全球范围内最常见的癌症之一,也是导致癌症相关死亡的主要原因之一 [32] 。一项长达16年的大型队列研究发现,NLR与肺癌死亡率呈正相关,即使在从不吸烟者和低风险个体中,在最高的NLR五分位数中也观察到肺癌死亡风险最高,这一结果是在调整肺功能和其他可能的混杂因素后得出的。而PLR与肺癌死亡率之间的关联在吸烟状况下可能存在差异。在曾经吸烟者中,PLR升高可能与更高的肺癌死亡风险相关。而在从不吸烟者中,PLR在较低水平时可能与较低的肺癌死亡风险相关 [33] 。此外,一项对参加健康检查的中国人群进行的大型回顾性分析中,首次检查了血液炎症标志物与总体人群中肺部阳性结节识别之间的关联,结果发现NLR、PLR或SII升高与结节识别阳性风险增加有关。此外,对于NLR与肺癌之间的关系,研究发现两者呈现出U型关联,而对于PLR和SII与肺癌之间的关系,则呈现出线性剂量效应关系 [34] 。这项研究结果表明,NLR、PLR和SII这些血液生物标志物可以作为肺癌筛查和早期诊断的潜在指标,提高肺癌的检出率、预测肺癌的发生风险以及进行肺癌患者的个体化治疗。目前已有多项研究证明炎症指标与肺癌预后及治疗敏感性之间的相关性。其中,Soykut等人的研究提出了NLR、PLR和SII与局部晚期非小细胞肺癌OS、PFS及局部区域无复发生存期的改善独立相关,并且低NLR和SII组的患者在放射治疗中表现出更好的敏感性 [35] 。针对小细胞肺癌患者的Meta分析显示了SII升高与患者的OS不良有关。这意味着,SII升高可能是小细胞肺癌患者预后不佳的一个预测指标。此外,高SII还可以预测广泛期小细胞肺癌的发生 [36] 。然而,炎症指标在临床应用中仍面临一些挑战和限制,因此需要进一步研究以完善其在肺癌预后和治疗敏感性中的应用。

5.3. 消化系统恶性肿瘤

消化道肿瘤是指发生在人体消化道内的恶性肿瘤,包括食管癌、胃癌、十二指肠癌、结肠直肠癌等。消化道肿瘤是世界上最常见的恶性肿瘤之一,每年因该疾病死亡的人数超过200万。胃癌是消化道肿瘤中最为常见的一种,全球每年新发胃癌病例约为103万例。此外,结直肠癌、食管癌、胰腺癌等消化道其他类型的恶性肿瘤也有逐年增多的趋势 [37] [38] 。Jiang等人通过分析覆盖22,260名患者的72项研究的汇总资料,旨在探讨基于炎症及营养的生物标志物在食管癌预后中的预测价值,研究结果显示NLR、PLR及SII的升高与食管癌整体生存率OS不良密切相关。此外,若患者的NLR和PLR水平较高,则DFS较差,高水平的NLR与癌症特异性生存期的下降也存在显著联系 [39] 。在接受胃切除术的胃癌患者中,SII等于或大于660与一系列不良临床特征显著相关,包括高龄、肿瘤体积大、不良Borrmann分级、晚期肿瘤侵袭、淋巴结转移、远处转移、晚期TNM分期等。SII的高值与胃癌不良预后之间存在显著的相关性,并且它是OS的独立预测因子。SII在预测胃癌患者OS方面优于NLR和PLR。作为一种方便、易于获得、低成本且无创的生物标志物,SII可作为胃癌患者预后预测指标的 TNM 分期的补充 [40] 。常用于检测胃癌的肿瘤标志物,如癌胚抗原(Carcinoembryonic Antigen, CEA)和碳水化合物抗原19-9 (Carbohydrate Antigen 19-9, CA19-9),由于其敏感性和特异性相对较低,因此在临床应用上受到了限制 [41] 。为了寻找更有效的生物标志物,Fang等研究者首次将这些传统的肿瘤标志物与炎症相关的标志物进行对比研究。研究结果显示,在与健康对照组比较时,胃癌患者的PLR和NLR均有所上升。与CEA和CA19-9相似的,NLR和PLR随着肿瘤分期进展而增加,而在肿瘤的早期,这种上升趋势尤为明显。因此,无论是将NLR和PLR单独使用还是组合应用,它们在诊断胃癌方面都表现出超越CEA和CA19-9的潜力,为早期诊断和评估提供了新的可能性 [42] 。在对其他消化系统恶性肿瘤,包括结直肠癌与胰腺癌的研究中,发现SII与患者的OS以及PFS均呈现出明显的相关性 [43] [44] 。基于此,我们提倡将SII作为一种成本效益高的生物标志物,用于监测癌症患者的生存状况。

5.4. 妇科恶性肿瘤

妇科肿瘤泛指发生在女性生殖系统内的各类肿瘤,包括子宫、卵巢、宫颈、阴道以及外阴的恶性肿瘤。宫颈癌(Cervical Cancer, CC)作为女性最常见的三种恶性肿瘤之一,与人类乳头状瘤病毒的感染密切相关 [45] 。在预测宫颈癌的诊断方面,NLR和PLR展现出很高的敏感性和特异性。侵入性CC的NLR和PLR相较于宫颈癌前病变患者明显升高,特别是在高级别鳞状上皮内病变患者群体中比低级别鳞状上皮内病变患者的指标更为突出。PLR的数值还与宫颈癌细胞侵入基质的深度、肿瘤体积的大小,以及是否有淋巴结转移情况,呈现出显著的相关性 [46] 。同步放化疗(Concurrent Chemoradiotherapy, CCRT)作为宫颈癌的核心治疗手段之一,治疗前NLR和PLR升高与CCRT治疗后宫颈癌患者的复发风险呈显著相关性 [47] 。另外,根治性放化疗后的宫颈癌患者NLR的升高,与其PFS和OS较差相关 [48] 。SII已经确定为子宫内膜癌(Endometrial Cancer, EC)患者中淋巴结转移的独立危险指标。进一步的研究揭示了SII与患者年龄、绝经状态以及国际妇产科联盟(FIGO)分期之间存在显著的相关性。在尚未进入绝经期、较年轻的EC患者当中,SII水平上升是预示心肌梗死发生风险增高和病理等级进一步加重的重要信号。同时,针对55岁及以上或已经绝经的EC患者,SII的增加同样指向了晚期疾病恶化的潜在风险 [49] 。

5.5. 血液系统肿瘤

血液炎症指标正被深入研究用作预测各种实体癌的诊断和预后生物标志物,近期研究者们也开始关注其在血液系统肿瘤诊治领域的应用前景。血液系统肿瘤是一类起源于骨髓或淋巴系统的恶性肿瘤,影响血细胞的产生和功能,主要包括白血病、淋巴瘤及骨髓增值性肿瘤。在霍奇金森病患者和弥漫性大B细胞淋巴瘤患者群体中,SII被建议作为预测总生存期和无进展生存期的一种新的独立且更好的预后因素 [50] [51] 。一项针对急性髓系白血病(Acute Myeloid Leukemia, AML)患儿的研究表明,与对照组相比,AML组患儿NLR水平普遍偏高,值得关注的是,那些NLR表达较低的AML患儿在完全缓解的比例上超过了NLR表达较高的患儿,同时,在随后的三年随访期中,NLR低表达组患儿未出现复发的生存率也显著高于NLR高表达组,这提示较高的NLR水平可能是预示AML患儿预后不佳的一个指标,检测NLR水平有助于患儿疗效评估及预后判断 [52] 。然而,血液炎症指标目前在白血病中的研究较少,可能是由于不同类型的白血病在生物学特性和临床表现上都具有高度异质性,这限制了血液炎症指标在白血病中应用的准确性和相关性。此外,血液参数如中性粒细胞、血小板和淋巴细胞的水平受多种因素影响,包括感染、炎症反应以及白血病本身。这些参数可能随时间而变化,因此在使用血液炎症指标作为诊断工具或预后指标时需要考虑这些动态变化。综合各种诊疗方法,包括临床表现、实验室检测、影像学评估和分子遗传学分析,才能更准确地诊断和评估白血病患者的预后。

6. 结语

SII、NLR和PLR是近年来在癌症研究中受到关注的几种免疫炎症相关的生物标志物,它们都来源于常规的血液检查,相比复杂的生物标志物和影像检查,成本低且更易于临床操作。这些指标被用于预测患者的生存率、疾病复发率以及对治疗的反应。SII结合了中性粒细胞、血小板和淋巴细胞的计数,为评估患者整体生存和复发风险提供了一个更全面的指标。然而血液炎症指标受到其他非肿瘤相关因素的影响,不同癌症及不同个体之间存在较大异质性,因此还需要更多的临床研究来确认其准确性和可靠性,并确定标准化的使用准则。在实践中,它们更可能作为一种辅助工具,与其他诊断和预后评估方法结合使用,为肿瘤患者的个性化治疗提供更丰富的信息。

NOTES

*通讯作者。

参考文献

[1] Torre, L.A., Siegel, R.L., Ward, E.M. and Jemal, A. (2016) Global Cancer Incidence and Mortality Rates and Trends—An Update. Cancer Epidemiology, Biomarkers & Prevention, 25, 16-27.
https://doi.org/10.1158/1055-9965.EPI-15-0578
[2] Singh, N., Baby, D., Rajguru, J.P., Patil, P.B., Thakkannavar, S.S. and Pujari, V.B. (2019) Inflammation and Cancer. Annals of African Medicine, 18, 121-126.
https://doi.org/10.4103/aam.aam_56_18
[3] Arneth, B. (2019) Tumor Microenvironment. Medicina, 56, Article 15.
https://doi.org/10.3390/medicina56010015
[4] Smith, J.A. (1994) Neutrophils, Host Defense, and Inflamma-tion: A Double-Edged Sword. Journal of Leukocyte Biology, 56, 672-686.
https://doi.org/10.1002/jlb.56.6.672
[5] Gao, F., Feng, Y., Hu, X., Zhang, X., Li, T., Wang, Y., Ge, S., Wang, C., Chi, J., Tan, X. and Wang, N. (2023) Neutrophils Regulate Tumor Angiogenesis in Oral Squamous Cell Carcinoma and the Role of Chemerin. International Immunopharmacology, 121, Article ID: 110540.
https://doi.org/10.1016/j.intimp.2023.110540
[6] Mizuno, R., Kawada, K., Itatani, Y., Ogawa, R., Kiyasu, Y. and Sakai, Y. (2019) The Role of Tumor-Associated Neutrophils in Colorectal Cancer. International Journal of Molecular Sciences, 20, Article 529.
https://doi.org/10.3390/ijms20030529
[7] Hong, Y.M., Yoon, K.T., Hwang, T.H. and Cho, M. (2020) Pretreat-ment Peripheral Neutrophils, Lymphocytes and Monocytes Predict Long-Term Survival in Hepatocellular Carcinoma. BMC Cancer, 20, Article No. 937.
https://doi.org/10.1186/s12885-020-07105-8
[8] Yin, W., Lv, J., Yao, Y., Zhao, Y., He, Z., Wang, Q., Cui, L. and Dai, H. (2021) Elevations of Monocyte and Neutrophils, and Higher Levels of Granulocyte Colony-Stimulating Factor in Peripheral Blood in Lung Cancer Patients. Thoracic Cancer, 12, 2680-2690.
https://doi.org/10.1111/1759-7714.14103
[9] Gungabeesoon, J., Gort-Freitas, N.A., Kiss, M., Bolli, E., Messe-maker, M., Siwicki, M., Hicham, M., Bill, R., Koch, P., Cianciaruso, C., Duval, F., Pfirschke, C., Mazzola, M., Peters, S., Homicsko, K., Garris, C., Weissleder, R., Klein, A.M. and Pittet, M.J. (2023) A Neutrophil Response Linked to Tu-mor Control in Immunotherapy. Cell, 186, 1448-1464.E20.
https://doi.org/10.1016/j.cell.2023.02.032
[10] Vols, S., Sionov, R.V. and Granot, Z. (2017) Always Look on the Bright Side: Anti-Tumor Functions of Neutrophils. Current Pharmaceutical Design, 23, 4862-4892.
https://doi.org/10.2174/1381612823666170704125420
[11] Abd Hamid, M., Peng, Y. and Dong, T. (2020) Human Cancer Germline Antigen-Specific Cytotoxic T Cell—What Can We Learn from Patient. Cellular & Molecular Immunology, 17, 684-692.
https://doi.org/10.1038/s41423-020-0468-x
[12] Voskoboinik, I., Whisstock, J.C. and Trapani, J.A. (2015) Per-forin and Granzymes: Function, Dysfunction and Human Pathology. Nature Reviews Immunology, 15, 388-400.
https://doi.org/10.1038/nri3839
[13] Barth Jr., R.J., Mulé, J.J., Spiess, P.J. and Rosenberg, S.A. (1991) Interferon γ and Tumor Necrosis Factor Have a Role in Tumor Regressions Mediated by Murine CD8+ Tumor-Infiltrating Lym-phocytes. Journal of Experimental Medicine, 173, 647-658.
https://doi.org/10.1084/jem.173.3.647
[14] Bennett, S.R., Carbone, F.R., Karamalis, F., Miller, J.F. and Heath, W.R. (1997) Induction of a CD8+ Cytotoxic T Lymphocyte Response by Cross-Priming Requires Cognate CD4+ T Cell Help. Journal of Experimental Medicine, 186, 65-70.
https://doi.org/10.1084/jem.186.1.65
[15] Ossendorp, F., Mengedé, E., Camps, M., Filius, R. and Melief, C.J. (1998) Specific T Helper Cell Requirement for Optimal Induction of Cytotoxic T Lymphocytes against Major Histocom-patibility Complex Class II Negative Tumors. Journal of Experimental Medicine, 187, 693-702.
https://doi.org/10.1084/jem.187.5.693
[16] Takagi, S., Sato, S., Oh-hara, T., Takami, M., Koike, S., Mishima, Y., Hatake, K. and Fujita, N. (2013) Platelets Promote Tumor Growth and Metastasis via Direct Interaction between Ag-grus/Podoplanin and CLEC-2. PLOS ONE, 8, e73609.
https://doi.org/10.1371/journal.pone.0073609
[17] Lucotti, S. and Muschel, R.J. (2020) Platelets and Metastasis: New Implications of an Old Interplay. Frontiers in Oncology, 10, Article 1350.
https://doi.org/10.3389/fonc.2020.01350
[18] Nieswandt, B., Hafner, M., Echtenacher, B. and Män-nel, D.N. (1999) Lysis of Tumor Cells by Natural Killer Cells in Mice Is Impeded by Platelets. Cancer Research, 59, 1295-1300.
[19] Battinelli, E.M., Markens, B.A. and Italiano Jr., J.E. (2011) Release of Angiogenesis Regulatory Pro-teins from Platelet α Granules: Modulation of Physiologic and Pathologic Angiogenesis. Blood, 118, 1359-1369.
https://doi.org/10.1182/blood-2011-02-334524
[20] Kopp, H.G., Placke, T. and Salih, H.R. (2009) Platelet-Derived Transforming Growth Factor-β Down-Regulates NKG2D Thereby Inhibiting Natural Killer Cell Antitumor Reactivity. Cancer Research, 69, 7775-7783.
https://doi.org/10.1158/0008-5472.CAN-09-2123
[21] Schlesinger, M. (2018) Role of Platelets and Platelet Re-ceptors in Cancer Metastasis. Journal of Hematology & Oncology, 11, Article No. 125.
https://doi.org/10.1186/s13045-018-0669-2
[22] Xu, X.R., Carrim, N., Neves, M.A., McKeown, T., Stratton, T.W., Coelho, R.M., Lei, X., Chen, P., Xu, J., Dai, X., Li, B.X. and Ni, H. (2016) Platelets and Platelet Adhesion Mole-cules: Novel Mechanisms of Thrombosis and Anti-Thrombotic Therapies. Thrombosis Journal, 14, Article No. 29.
https://doi.org/10.1186/s12959-016-0100-6
[23] Hamidi, H. and Ivaska, J. (2018) Every Step of the Way: Integrins in Cancer Progression and Metastasis. Nature Reviews Cancer, 18, 533-548.
https://doi.org/10.1038/s41568-018-0038-z
[24] Berndt, M.C., Gregory, C., Kabral, A., Zola, H., Fournier, D. and Castaldi, P.A. (1985) Purification and Preliminary Characterization of the Glycoprotein Ib Complex in the Human Platelet Membrane. European Journal of Biochemistry, 151, 637-649.
https://doi.org/10.1111/j.1432-1033.1985.tb09152.x
[25] Läubli, H. and Borsig, L. (2010) Selectins Promote Tu-mor Metastasis. Seminars in Cancer Biology, 20, 169-177.
https://doi.org/10.1016/j.semcancer.2010.04.005
[26] Miao, Y., Xu, Z., Feng, W., Zheng, M., Xu, Z., Gao, H., Li, W., Zhang, Y., Zong, Y., Lu, A. and Zhao, J. (2022) Platelet Infiltration Predicts Survival in Postsurgical Colorectal Cancer Patients. International Journal of Cancer, 150, 509-520.
https://doi.org/10.1002/ijc.33816
[27] Caudell, J.J., Gillison, M.L., Maghami, E., Spencer, S., Pfister, D.G., Adkins, D., Birkeland, A.C., Brizel, D.M., Busse, P.M., Cmelak, A.J., Colevas, A.D., Eisele, D.W., Galloway, T., Geiger, J.L., Haddad, R.I., Hicks, W.L., Hitchcock, Y.J., Jimeno, A., Leizman, D., Mell, L.K., Mittal, B.B., Pinto, H.A., Rocco, J.W., Rodriguez, C.P., Savvides, P.S., Schwartz, D., Shah, J.P., Sher, D., St John, M., Weber, R.S., Weinstein, G., Worden, F., Yang Bruce, J., Yom, S.S., Zhen, W., Burns, J.L. and Darlow, S.D. (2022) NCCN Guidelines® Insights: Head and Neck Cancers, Version 1.2022. Journal of the National Comprehensive Cancer Network, 20, 224-234.
https://doi.org/10.6004/jnccn.2022.0016
[28] Lin, Z., Zhang, X., Luo, Y., Chen, Y. and Yuan, Y. (2021) The Value of Hemoglobin-to-Red Blood Cell Distribution Width Ra-tio (Hb/RDW), Neutrophil-to-Lymphocyte Ratio (NLR), and Platelet-to-Lymphocyte Ratio (PLR) for the Diagnosis of Nasopharyngeal Cancer. Medicine, 100, e26537.
https://doi.org/10.1097/MD.0000000000026537
[29] Jiang, W., Chen, Y., Huang, J., Xi, D., Chen, J., Shao, Y., Xu, G., Ying, W., Wei, J., Chen, J., Ning, Z., Gu, W. and Pei, H. (2017) Systemic Immune-Inflammation Index Predicts the Clinical Outcome in Patients with Nasopharyngeal Carcinoma: A Propensity Score-Matched Analysis. Oncotarget, 8, 66075-66086.
https://doi.org/10.18632/oncotarget.19796
[30] Gaudioso, P., Borsetto, D., Polesel, J., Tirelli, G., Emanuelli, E., Menegaldo, A., Molteni, G., Nicolai, P., Tomasoni, M., Montenegro, C., Piazza, C., Bossi, P., Ciorba, A., Canzi, P., Giacomarra, V., Giudici, F., Fussey, J. and, Boscolo-Rizzo, P. (2023) Blood Markers Predicting Clinically Occult Lymph Node Metastasis in Head and Neck Squamous Cell Carcinoma. ORL, 16, 1-9.
https://doi.org/10.1159/000534079
[31] Zhao, L., Zhou, T., Zhang, W., Wu, F., Jiang, K., Lin, B., Zhan, S., Hu, T., Tang, T., Zhang, Y. and Luo, D. (2022) Blood Immune Indexes Can Predict Lateral Lymph Node Metastasis of Thyroid Papillary Carcinoma. Frontiers in Endocrinology, 13, Article 995630.
https://doi.org/10.3389/fendo.2022.995630
[32] Siegel, R.L., Miller, K.D. and Jemal, A. (2020) Cancer Statistics, 2020. CA: A Cancer Journal for Clinicians, 70, 7-30.
https://doi.org/10.3322/caac.21590
[33] Kang, J., Chang, Y., Ahn, J., Oh, S., Koo, D.H., Lee, Y.G., Shin, H. and Ryu, S. (2019) Neutrophil-to-Lymphocyte Ratio and Risk of Lung Cancer Mortality in a Low-Risk Population: A Cohort Study. International Journal of Cancer, 145, 3267-3275.
https://doi.org/10.1002/ijc.32640
[34] Tian, T., Lu, J., Zhao, W., Wang, Z., Xu, H., Ding, Y., Guo, W., Qin, P., Zhu, W., Song, C., Ma, H., Zhang, Q. and Shen, H. (2022) Associations of Systemic Inflammation Markers with Identification of Pulmonary Nodule and Incident Lung Cancer in Chinese Population. Cancer Medicine, 11, 2482-2491.
https://doi.org/10.1002/cam4.4606
[35] Delikgoz Soykut, E., Kemal, Y., Karacin, C., Karaoglanoglu, O., Kurt, M. and Aytac Arslan, S. (2022) Prognostic Impact of Immune In-flammation Biomarkers in Predicting Survival and Radiosensitivity in Patients with Non-Small-Cell Lung Cancer Treated with Chemoradiotherapy. Journal of Medical Imaging and Radiation Oncology, 66, 146-157.
https://doi.org/10.1111/1754-9485.13341
[36] Zhou, Y., Dai, M. and Zhang, Z. (2022) Prognostic Significance of the Systemic Immune-Inflammation Index (SII) in Patients with Small Cell Lung Cancer: A Meta-Analysis. Frontiers in Oncology, 12, Article 814727.
https://doi.org/10.3389/fonc.2022.814727
[37] Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Sta-tistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[38] Thrift, A.P., Wenker, T.N. and El-Serag, H.B. (2023) Global Burden of Gastric Cancer: Epidemiological Trends, Risk Factors, Screening and Prevention. Nature Reviews Clinical Oncology, 20, 338-349.
https://doi.org/10.1038/s41571-023-00747-0
[39] Jiang, Y., Xu, D., Song, H., Qiu, B., Tian, D., Li, Z., Ji, Y. and Wang, J. (2021) Inflammation and Nutrition-Based Biomarkers in the Prognosis of Oesophageal Cancer: A Systematic Review and Meta-Analysis. BMJ Open, 11, e048324.
https://doi.org/10.1136/bmjopen-2020-048324
[40] Wang, K., Diao, F., Ye, Z., Zhang, X., Zhai, E., Ren, H., Li, T., Wu, H., He, Y., Cai, S. and Chen, J. (2017) Prognostic Value of Systemic Immune-Inflammation Index in Patients with Gastric Cancer. Chinese Journal of Cancer, 36, Article No. 75.
https://doi.org/10.1186/s40880-017-0243-2
[41] Liang, Y., Wang, W., Fang, C., Raj, S.S., Hu, W.M., Li, Q.W. and Zhou, Z.W. (2016) Clinical Significance and Diagnostic Value of Serum CEA, CA19-9 and CA72-4 in Patients with Gastric Cancer. Oncotarget, 7, 49565-49573.
https://doi.org/10.18632/oncotarget.10391
[42] Fang, T., Wang, Y., Yin, X., Zhai, Z., Zhang, Y., Yang, Y., You, Q., Li, Z., Ma, Y., Li, C., Song, H., Shi, H., Zhang, Y., Yu, X., Gao, H., Sun, Y., Xie, R. and Xue, Y. (2020) Diagnos-tic Sensitivity of NLR and PLR in Early Diagnosis of Gastric Cancer. Journal of Immunology Research, 2020, Article ID: 9146042.
https://doi.org/10.1155/2020/9146042
[43] Yang, J., Guo, X., Wu, T., Niu, K. and Ma, X. (2019) Prognostic Significance of Inflammation-Based Indexes in Patients with Stage III/IV Colorectal Cancer after Adjuvant Chemoradiotherapy. Medicine, 98, e14420.
https://doi.org/10.1097/MD.0000000000014420
[44] Li, M., Li, Z., Wang, Z., Yue, C., Hu, W. and Lu, H. (2022) Prognostic Value of Systemic Immune-Inflammation Index in Patients with Pancreatic Cancer: A Meta-Analysis. Clinical and Experimental Medicine, 22, 637-646.
https://doi.org/10.1007/s10238-021-00785-x
[45] Arbyn, M., Weiderpass, E., Bruni, L., de Sanjosé, S., Saraiya, M., Ferlay, J. and Bray, F. (2020) Estimates of Incidence and Mortality of Cervical Cancer in 2018: A Worldwide Anal-ysis. The Lancet Global Health, 8, e191-e203.
https://doi.org/10.1016/S2214-109X(19)30482-6
[46] Tas, M., Yavuz, A., Ak, M. and Ozcelik, B. (2019) Neu-trophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio in Discriminating Precancerous Pathologies from Cervical Cancer. Journal of Oncology, 2019, Article ID: 2476082.
https://doi.org/10.1155/2019/2476082
[47] Nakamura, K., Nishida, T., Haruma, T., Haraga, J., Omichi, C., Ogawa, C., Kusumoto, T., Seki, N., Masuyama, H. and Hiramatsu, Y. (2015) Pretreatment Platelet-Lymphocyte Ratio Is an In-dependent Predictor of Cervical Cancer Recurrence Following Concurrent Chemoradiation Therapy. Molecular and Clin-ical Oncology, 3, 1001-1006.
https://doi.org/10.3892/mco.2015.595
[48] Trinh, H., Dzul, S.P., Hyder, J., Jang, H., Kim, S., Flowers, J., Vaishampayan, N., Chen, J., Winer, I. and Miller, S. (2020) Prognostic Value of Changes in Neutrophil-to-Lymphocyte Ratio (NLR), Platelet-to-Lymphocyte Ratio (PLR) and Lymphocyte-to-Monocyte Ratio (LMR) for Patients with Cervical Cancer Undergoing Definitive Chemoradiotherapy (dCRT). Clinica Chimica Acta, 510, 711-716.
https://doi.org/10.1016/j.cca.2020.09.008
[49] Lei, H., Xu, S., Mao, X., Chen, X., Chen, Y., Sun, X. and Sun, P. (2021) Systemic Immune-Inflammatory Index as a Predictor of Lymph Node Metastasis in Endometrial Cancer. Journal of Inflammation Research, 14, 7131-7142.
https://doi.org/10.2147/JIR.S345790
[50] Mirili, C., Paydas, S., Kapukaya, T.K. and Yılmaz, A. (2019) Systemic Immune-Inflammation Index Predicting Survival Outcome in Patients with Classical Hodgkin Lymphoma. Biomarkers in Medicine, 13, 1565-1575.
https://doi.org/10.2217/bmm-2019-0303
[51] Wang, Z., Zhang, J., Luo, S. and Zhao, X. (2021) Prognostic Signif-icance of Systemic Immune-Inflammation Index in Patients with Diffuse Large B-Cell Lymphoma. Frontiers in Oncolo-gy, 11, Article 655259.
https://doi.org/10.3389/fonc.2021.655259
[52] 李妍, 张合成, 王国锋, 范朋凯. 外周血中性粒细胞与淋巴细胞比值、淋巴细胞与单核细胞比值对患儿急性髓系白血病疗效及预后的评估价值[J]. 陕西医学杂志, 2022, 51(12): 1516-1519.