| [1] | Wallach, D. and Kang, T.B. (2018) Programmed Cell Death in Immune Defense: Knowledge and Presumptions. Immun-ity, 49, 19-32. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [2] | D’Arcy, M.S. (2019) Cell Death: A Review of the Major Forms of Apoptosis, Necrosis and Autophagy. Cell Biology International, 43, 582-592. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [3] | Loveless, R., Bloomquist, R. and Teng, Y. (2021) Pyroptosis at the Fore-front of Anticancer Immunity. Journal of Experimental & Clinical Cancer Research, 40, Article No. 264. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [4] | Yu, S.W., Wang, H., Poitras, M.F., Coombs, C., Bowers, W.J., Federoff, H.J., Poirier, G.G., Dawson, T.M. and Dawson, V.L. (2002) Mediation of Poly (ADP-Ribose) Polymer-ase-1-Dependent Cell Death by Apoptosis-Inducing Factor. Science, 297, 259-263. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [5] | Cookson, B.T. and Brennan, M.A. (2001) Pro-Inflammatory Pro-grammed Cell Death. Trends in Microbiology, 9, 113-114. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [6] | Degterev, A., Huang, Z., Boyce, M., et al. (2005) Chemical Inhibitor of Nonapoptotic Cell Death with Therapeutic Potential for Ischemic Brain Injury. Nature Chemical Biology, 1, 112-119. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [7] | Van Opdenbosch, N. and Lamkanfi, M. (2019) Caspases in Cell Death, Inflammation, and Disease. Immunity, 50, 1352-1364. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [8] | Vandenabeele, P., Galluzzi, L., Vanden Berghe, T., et al. (2010) Molecular Mechanisms of Necroptosis: An Ordered Cellular Explosion. Nature Reviews Molecular Cell Biology, 11, 700-714. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [9] | Grootjans, S., Vanden Berghe, T. and Vandenabeele, P. (2017) Ini-tiation and Execution Mechanisms of Necroptosis: An Overview. Cell Death & Differentiation, 24, 1184-1195. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [10] | Vande Walle, L., Jiménez Fernández, D., Demon, D., et al. (2016) Does Caspase-12 Suppress Inflammasome Activation? Nature, 534, E1-E4. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [11] | Zhu, F., Zhang, W., Yang, T. and He, S.D. (2019) Complex Roles of Necroptosis in Cancer. Journal of Zhejiang University-SCIENCE B, 20, 399-413. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [12] | Qin, X., Ma, D., Tan, Y.X., et al. (2019) The Role of Necroptosis in Cancer: A Double-Edged Sword? Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1871, 259-266. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [13] | Estey, E. and Döhner, H. (2006) Acute Myeloid Leukaemia. Lancet, 368, 1894-1907. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [14] | Shallis, R.M., Wang, R., Davidoff, A., Ma, X. and Zeidan, A.M. (2019) Epidemiology of Acute Myeloid Leukemia: Recent Progress and Enduring Challenges. Blood Reviews, 36, 70-87. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [15] | Fulda, S. and Debatin, K.M. (2006) Extrinsic versus Intrin-sic Apoptosis Pathways in Anticancer Chemotherapy. Oncogene, 25, 4798-4811. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [16] | Nugues, A.L., El Bouazzati, H., Hétuin, D., et al. (2014) RIP3 Is Downregulated in Human Myeloid Leukemia Cells and Modulates Apoptosis and Caspase-Mediated P65/RelA Cleavage. Cell Death & Disease, 5, e1384. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [17] | Liu, Y., Chen, P., Xu, L., et al. (2019) Extracellular HMGB1 Prevents Necroptosis in Acute Myeloid Leukemia Cells. Biomedicine & Pharmacotherapy, 112, Article ID: 108714. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [18] | Meng, L., Li, L., Lu, S., et al. (2018) The Protective Effect of Dexmedetomidine on LPS-Induced Acute Lung Injury through the HMGB1-Mediated TLR4/NF-κB and PI3K/Akt/MTOR Pathways. Molecular Immunology, 94, 7-17. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [19] | Safferthal, C., Rohde, K. and Fulda, S. (2017) Therapeutic Targeting of Necroptosis by Smac Mimetic Bypasses Apoptosis Resistance in Acute Myeloid Leukemia Cells. Oncogene, 36, 1487-1502. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [20] | Li, J., Liao, D., Wang, F., Wang, Z., et al. (2022) RIPK1 Inhibition En-hances the Therapeutic Efficacy of Chidamide in FLT3-ITD Positive AML, Both in Vitro and in Vivo. Leukemia & Lym-phoma, 63, 1167-1179. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [21] | Dan, W., Zhong, L., Zhang, Z., et al. (2022) RIP1-Dependent Apoptosis and Differentiation Regulated by Skp2 and Akt/GSK3β in Acute Myeloid Leukemia. Inter-national Journal of Medical Sciences, 19, 525-536. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [22] | McComb, S., Aguadé-Gorgorió, J., Harder, L., et al. (2016) Activation of Concurrent Apoptosis and Necroptosis by SMAC Mimetics for the Treatment of Refractory and Relapsed ALL. Science Translational Medicine, 8, 339ra70. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [23] | Bonapace, L., Bornhauser, B.C., Schmitz, M., et al. (2010) In-duction of Autophagy-Dependent Necroptosis Is Required for Childhood Acute Lymphoblastic Leukemia Cells to Over-come Glucocorticoid Resistance. Journal of Clinical Investigation, 120, 1310-1323. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [24] | Xu, Z., Sun, Y., Wei, Z., et al. (2020) Suppression of CXCL-1 Could Re-store Necroptotic Pathway in Chronic Lymphocytic Leukemia. OncoTargets and Therapy, 13, 6917-6925. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [25] | Cerhan, J.R., Ansell, S.M., Fredericksen, Z.S., et al. (2007) Genetic Variation in 1253 Immune and Inflammation Genes and Risk of Non-Hodgkin Lymphoma. Blood, 110, 4455-4463. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [26] | Hirsch, B., Von Der Wall, E., Hummel, M., et al. (2013) RIP1 Expression Is Necessary for CD30-Mediated Cell Death Induction in Anaplastic Large-Cell Lymphoma Cells. Labora-tory Investigation, 93, 677-689. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [27] | Koch, A., Jeiler, B., Roedig, J., et al. (2021) Smac Mimetics and TRAIL Cooperate to Induce MLKL-Dependent Necroptosis in Burkitt’s Lymphoma Cell Lines. Neoplasia, 23, 539-550. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [28] | Cowan, A.J., Green, D.J., Kwok, M., et al. (2022) Diagnosis and Management of Multiple Myeloma: A Review. JAMA, 327, 464-477. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [29] | Chen, J., Wang, S., Blokhuis, B., Ruijtenbeek, R., et al. (2022) Cell Death Triggers Induce MLKL Cleavage in Multiple Myeloma Cells, Which May Promote Cell Death. Frontiers in On-cology, 12, Article 907036. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [30] | Xu, Z., Sun, Y., Jiang, J. and Liu, P. (2022) The Role of KIAA1191 in the Necroptotic Pathway of Multiple Myeloma. Annals of Hematology, 101, 359-367. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [31] | Mishra, M., Inoue, N. and Heese, K. (2011) Characterizing the Novel Protein P33MONOX. Molecular and Cellular Biochemistry, 350, 127-134. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [32] | Dickinson, M., Cherif, H., Fenaux, P. and SUPPORT Study In-vestigators (2018) Azacitidine with or without Eltrombopag for First-Line Treatment of Intermediate- or High-Risk MDS with Thrombocytopenia. Blood, 132, 2629-2638. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [33] | Wagner, P.N., Shi, Q., Salisbury-Ruf, C.T., et al. (2019) In-creased Ripk1-Mediated Bone Marrow Necroptosis Leads to Myelodysplasia and Bone Marrow Failure in Mice. Blood, 133, 107-120. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [34] | Zou, J., Shi, Q., Chen, H., et al. (2021) Programmed Necrop-tosis Is Upregulated in Low-Grade Myelodysplastic Syndromes and May Play a Role in the Pathogenesis. Experimental Hematology, 103, 60-72.E5. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [35] | Montalban-Bravo, G., Class, C.A. and Ganan-Gomez, I. (2020) Transcriptomic Analysis Implicates Necroptosis in Disease Progression and Prognosis in Myelodysplastic Syndromes. Leukemia, 34, 872-881. [Google Scholar] [CrossRef] [PubMed] |