#### 期刊菜单

10kV架空线路相间间隔棒抑舞动研究
Study on the Suppression and Dancing of In-terphase Spacer Rods in 10kV Overhead Lines
DOI: 10.12677/AEPE.2024.121005, PDF, HTML, XML, 下载: 106  浏览: 200

Abstract: With the increasing demand for electricity in the society, in order to prevent the short-circuit trip of 10kV overhead lines from interphase wire collision and ensure the safe and reliable operation of the lines, the ice covering model of the wires was built to simulate the motion state of the ice-covered wires under static and dynamic action, and the dynamic characteristics of the ice dancing of the overhead lines in the triangular arrangement were simulated by finite element method. The influence of wire diameter and material on line movement and force is analyzed. Considering the anti-dance effect, cost and safety reliability of spacer bar, the anti-dance scheme of interphase spacer bar is proposed. The experiment proves that the dancing amplitude of overhead line is sig-nificantly reduced and the safety and reliability of overhead line is improved.

1. 引言

2. 10kV架空导线的舞动与受力研究

2.1. 覆冰输电线路模型构建

10kV架空导线多为多股绞合导线，刚度小易扭转，导线覆冰后截面多出现圆形、椭圆形 [6] 。本文主要针对圆形覆冰导线进行研究，采用厚度均匀的圆柱形覆冰导线模型，如图1所示。

Figure 1. Ice covered wire structure

2.2. 研究计算方法

$\frac{\partial \rho }{\partial t}+\frac{\partial \left(\rho {v}_{x}\right)}{\partial x}+\frac{\partial \left(\rho {v}_{y}\right)}{\partial y}+\frac{\partial \left(\rho {v}_{z}\right)}{\partial z}=0$ (1)

$\left\{\begin{array}{l}\frac{\partial \left(\rho {v}_{x}\right)}{\partial t}+div\left(\rho {v}_{x}v\right)=-\frac{\partial p}{\partial x}+\frac{\partial {\tau }_{xx}}{\partial x}+\frac{\partial {\tau }_{yx}}{\partial y}+\frac{\partial {\tau }_{zx}}{\partial z}+{F}_{x}\\ \frac{\partial \left(\rho {v}_{y}\right)}{\partial t}+div\left(\rho {v}_{y}v\right)=-\frac{\partial p}{\partial y}+\frac{\partial {\tau }_{xy}}{\partial x}+\frac{\partial {\tau }_{yy}}{\partial y}+\frac{\partial {\tau }_{zy}}{\partial z}+{F}_{y}\\ \frac{\partial \left(\rho {v}_{z}\right)}{\partial t}+div\left(\rho {v}_{z}v\right)=-\frac{\partial p}{\partial z}+\frac{\partial {\tau }_{xz}}{\partial x}+\frac{\partial {\tau }_{yz}}{\partial y}+\frac{\partial {\tau }_{zz}}{\partial z}+{F}_{z}\end{array}$ (2)

2.3. 仿真参数设置

Figure 2. Flow field setting

2.4. 试验数值模拟结果

Figure 3. When the wind speed is 25 m/s and the ice thickness is 4 mm, the conductor moves along the path

2.5. 导线在静力和动力作用下的运动状态

(a) 无覆冰 (b) 覆冰厚度4 mm

Figure 4. Static sag of conductor in no wind

2.6. 覆冰厚度对导线舞动特性的影响

Figure 5. Conductor galloping amplitude under different ice thickness

Figure 6. Maximum stress of traverse under different ice thicknesses

2.7. 导线对舞动特性的影响

Figure 7. Conductor galloping amplitude under different diameters

Figure 8. The maximum stress of the conductor under different diameters

Figure 9. Conductor galloping amplitude under different conductor materials

Figure 10. Maximum stress of conductor under different conductor materials

3. 相间间隔棒的选择与安装位置优化

3.1. 间隔棒密度对舞动特性的影响

Figure 11. Effect of spacer rod density on traverse migration

Figure 12. Effect of spacer density on conductor stress

3.2. 安装间隔棒后导线耐风能力

Figure 13. Influence of wind speed on traverse movement deviation after installing spacer bars

Figure 14. Influence of wind speed on stress of wire after installing spacer bars

3.3. 间隔棒覆冰后导线耐风能力

Figure 15. Vertical galloping migration of wires with different spacer ice thickness

Figure 16. Horizontal dancing migration of wires with different spacer ice thickness

Figure 17. Influence of ice thickness of spacer on stress of conductor

3.4. 间隔棒安装数量与位置

Table 1. System resulting data of standard experiment

Figure 18. Galloping offset of wires at different installation positions

3.5. 间隔棒端部半导电层作用

(a) 无半导电层 (b) 有半导电层

Figure 19. Effect of semi-conductive layer on electric field distribution of interphase spacer

3.6. 间隔棒伞裙的作用

(a) 一伞裙 (b) 两伞裙

Figure 20. Effect of the number of parachute skirts on the electric field distribution of interphase spacers

4. 现场应用验证

(a) 竖直向下舞动幅度最大时无人机成像(b) 竖直向上舞动幅度最大时无人机成像

Figure 21. Vertical motion image of overhead line before spacer bar installation

(a) 竖直向下舞动幅度最大时无人机成像(b) 竖直向上舞动幅度最大时无人机成像

Figure 22. Vertical motion image of overhead line after spacer bar installation

5. 结论

1) 导线舞动幅值和应力与覆冰厚度呈正相关，覆冰厚度对导线受力的影响更大。

2) 舞动幅值和应力与导线线径呈反相关，可以通过增大线径抑制导线舞动，覆冰厚度越大，增大线径获得的抑舞效果越明显。相比于其他材质导线，铝芯导线受到的应力最小，舞动幅值也不大。

3) 增加间隔棒的安装数量可以提升对导线舞动的抑制效果，但也会增加导线承受的负荷和应力，安装时需要综合考虑经济成本和安全效益，选取合适的安装数量。

4) 加装间隔棒可以显著的降低架空线路舞动幅度，间隔棒覆冰厚度和间隔棒的材质对导线舞动特性影响变小；有效的降低架空线路舞动的旋转角度，从而降低垂直位移。

 [1] 郭应龙, 李国兴, 尤传勇. 输电线路舞动[M]. 北京: 中国电力出版社, 2003. [2] 蔡光柱, 杨振, 郑鹏超. 大跨越输电线路巡检机器人系统的设计[J]. 电气技术, 2022, 23(4): 76-81. [3] 夏正春. 特高压输电线的覆冰舞动及脱冰跳跃研究[D]: [博士学位论文]. 武汉: 华中科技大学, 2008. [4] 孙珍茂. 输电线路舞动分析及防舞技术研究[D]: [博士学位论文]. 杭州: 浙江大学, 2010. [5] 王艳玲, 莫洋, 韩学山, 等. 考虑气象时空分布特性的输电线路模型和分析方法[J]. 电工技术学报, 2020, 35(3): 636-645. [6] 蒋兴良, 侯乐东, 韩兴波, 等. 输电线路导线覆冰扭转特性的数值模拟[J]. 电工技术学报, 2020, 35(8): 1818-1826. [7] 韩兴波, 吴海涛, 郭思华, 蒋兴良, 王钰洁. 输电线路单导线覆冰和扭转的相互影响机制分析[J]. 电工技术学报, 2022, 37(17): 4508-4516. [8] 赵高煜. 大跨越高压输电线路分裂导线覆冰舞动的研究[D]: [博士学位论文]. 武汉: 华中科技大学, 2005. [9] 王少华, 蒋兴良, 孙才新. 覆冰导线舞动特性及其引起的导线动态张力[J]. 电工技术学报, 2010, 25(1): 159-166. [10] 叶凡, 熊细涛, 桂菲菲, 等. 基于立体视觉技术的导地线覆冰厚度测量[J]. 电气技术, 2020, 21(2): 81-85. [11] 胡霁, 郭若颖, 裴长生, 等. 特高压交流线路的单档和3档舞动计算分析[J]. 高电压技术, 2013, 39(12): 3009-3014. [12] 刘胜春, 司佳钧, 郭昊, 等. 输电线路导线覆冰模拟计算与试验研究[J]. 中国电机工程学报, 2014(S1): 10. [13] 党乐, 郭金刚, 崔亚茹, 等. 架空输电线路金具材料研究现状及发展[J]. 电气技术, 2022, 23(4): 1-6. [14] 向玲, 唐亮, 卢明, 等. 三相特高压输电线路相地间隔棒防舞仿真分析简[J]. 中国工程机械学报, 2017, 15(4): 7. [15] 谢云云, 薛禹胜, 文福拴, 等. 冰灾对输电线故障率影响的时空评估[J]. 电力系统自动化, 2013, 37(18): 32-41. [16] 严波, 崔伟, 何小宝, 等. 三相导线三角形排布线路相间间隔棒防舞研究[J]. 振动与冲击, 2016, 35(1): 106-111.