[1]
|
Agarwal, S. and Agrawal, D.K. (2016) Kawasaki Disease: Etiopathogenesis and Novel Treatment Strategies. Expert Review of Clinical Immunology, 13, 247-258. https://doi.org/10.1080/1744666X.2017.1232165
|
[2]
|
Yang, F., Ao, X., Ding, L., et al. (2022) Non-Coding RNAs in Kawasaki Disease: Molecular Mechanisms and Clinical Implications. BioEssays, 44, Article 2100256. https://doi.org/10.1002/bies.202100256
|
[3]
|
张新艳, 杨婷婷, 何婷, 等. 2012至2016年单中心川崎病流行病学及临床特征研究[J]. 中国循证儿科杂志, 2018, 13(6): 427-433.
|
[4]
|
杜忠东, 陈笑征. 川崎病流行病学研究进展[J]. 中国实用儿科杂志, 2017, 32(8): 565-569.
|
[5]
|
Kuo, H.-C. (2023) Diagnosis, Progress, and Treatment Update of Kawasaki Disease. International Journal of Molecular Sciences, 24, Article 13948. https://doi.org/10.20944/preprints202308.0766.v1
|
[6]
|
Dominguez, S.R., Martin, B., Heizer, H., et al. (2016) Procalcitonin (PCT) and Kawasaki Disease: Does PCT Correlate with IVIG-Resistant Disease, Admission to the Inten-sive Care Unit, Or Development of Coronary Artery Lesions? Journal of the Pediatric Infectious Diseases Society, 5, 297-302. https://doi.org/10.1093/jpids/piv019
|
[7]
|
Li, X., Chen, Y., Tang, Y., et al. (2018) Predictors of Intrave-nous Immunoglobulin-Resistant Kawasaki Disease in Children: A Meta-Analysis of 4442 Cases. European Journal of Pediatrics, 177, 1279-1292.
https://doi.org/10.1007/s00431-018-3182-2
|
[8]
|
Chaudhary, H., Nameirakpam, J., Kumrah, R., et al. (2019) Bi-omarkers for Kawasaki Disease: Clinical Utility and the Challenges Ahead. Frontiers in Pediatrics, 7, Article 242. https://doi.org/10.3389/fped.2019.00242
|
[9]
|
Zhou, Y., Wu, Y., Yuan, C., et al. (2023) The Expression of Au-tophagy Markers in IVIG-Resistant Kawasaki Disease and the Establishment of Prediction Model. BMC Pediatrics, 23, Article No. 642.
https://doi.org/10.1186/s12887-023-04386-3
|
[10]
|
Yang, Y., Hu, X. and Wu, X. (2022) The Predictive Values of MMP-9, PLTs, ESR, and CRP Levels in Kawasaki Disease with Cardiovascular Injury. Evidence-Based Complementary and Alternative Medicine, 2022, Article ID: 6913315.
https://doi.org/10.1155/2022/6913315
|
[11]
|
Kim, S.H., Hwang, I.J. and Cho, Y.K. (2022) Platelet Indices as Di-agnostic Marker for Kawasaki Disease. Chonnam Medical Journal, 58, 110-118. https://doi.org/10.4068/cmj.2022.58.3.110
|
[12]
|
Esposito, S., Polinori, I. and Rigante, D. (2019) The Gut Microbiota-Host Partnership as a Potential Driver of Kawasaki Syndrome. Frontiers in Pediatrics, 7, Article 124. https://doi.org/10.3389/fped.2019.00124
|
[13]
|
Hu, X., Fan, R., Song, W., et al. (2022) Landscape of Intestinal Microbiota in Patients with IgA Nephropathy, IgA Vasculitis and Kawasaki Disease. Frontiers in Cellular and Infection Microbiology, 12, Article 1061629.
https://doi.org/10.3389/fcimb.2022.1061629
|
[14]
|
Nagata, S., Yamashiro, Y., Ohtsuka, Y., et al. (2009) Heat Shock Proteins and Superantigenic Properties of Bacteria from the Gastrointestinal Tract of Patients with Kawasaki Disease. Immunology, 128, 511-520.
https://doi.org/10.1111/j.1365-2567.2009.03135.x
|
[15]
|
Zeng, Q., Zeng, R. and Ye, J. (2023) Alteration of the Oral and Gut Microbiota in Patients with Kawasaki Disease. PeerJ, 11, e15662. https://doi.org/10.7717/peerj.15662
|
[16]
|
Lin, K.H., Chang, S.S., Yu, C., et al. (2015) Usefulness of Natriuretic Peptide for the Diagnosis of Kawasaki Disease: A Systematic Review and Meta-Analysis. BMJ Open, 5, e006703. https://doi.org/10.1136/bmjopen-2014-006703
|
[17]
|
Dionne, A. and Dahdah, N. (2018) A Decade of NT-proBNP in Acute Kawasaki Disease, from Physiological Response to Clinical Relevance. Children, 5, Article 141. https://doi.org/10.3390/children5100141
|
[18]
|
Nir, A., Lindinger, A., Rauh, M., et al. (2008) NT-Pro-B-Type Na-triuretic Peptide in Infants and Children: Reference Values Based on Combined Data from Four Studies. Pediatric Cardiology, 30, 3-8.
https://doi.org/10.1007/s00246-008-9258-4
|
[19]
|
Rusnati, M., Borsotti, P., Moroni, E., et al. (2019) The Calci-um-Binding Type III Repeats Domain of Thrombospondin-2 Binds to Fibroblast Growth Factor 2 (FGF2). Angiogenesis, 22, 133-144.
https://doi.org/10.1007/s10456-018-9644-3
|
[20]
|
Yang, S., Song, R., Li, X., et al. (2018) Thrombospondin-2 Pre-dicts Response to Treatment with Intravenous Immunoglobulin in Children with Kawasaki Disease. BMJ Paediatrics Open, 2, e000190.
https://doi.org/10.1136/bmjpo-2017-000190
|
[21]
|
Seki, M. and Minami, T. (2022) Kawasaki Disease: Pathology, Risks, and Management. Vascular Health and Risk Management, 18, 407-416. https://doi.org/10.2147/VHRM.S291762
|
[22]
|
Yu, X., Hirono, K.-I., Ichida, F., et al. (2004) Enhanced INOS Ex-pression in Leukocytes and Circulating Endothelial Cells Is Associated with the Progression of Coronary Artery Lesions in Acute Kawasaki Disease. Pediatric Research, 55, 688-694. https://doi.org/10.1203/01.PDR.0000113464.93042.A4
|
[23]
|
Xiong, Y., Xu, J., Zhang, D., et al. (2022) MicroRNAs in Kawasaki Disease: An Update on Diagnosis, Therapy and Monitoring. Frontiers in Immunology, 13, Ar-ticle 1016575. https://doi.org/10.3389/fimmu.2022.1016575
|
[24]
|
Liu, C., Yang, D., Wang, H., et al. (2021) MicroRNA-197-3p Mediates Damage to Human Coronary Artery Endothelial Cells via Targeting TIMP3 in Kawasaki Disease. Molecular and Cellular Biochemistry, 476, 4245-4263.
https://doi.org/10.1007/s11010-021-04238-7
|
[25]
|
Son, D.J., Jung, Y.Y., Seo, Y.S., et al. (2017) Interleukin-32α Inhibits Endothelial Inflammation, Vascular Smooth Muscle Cell Activation, and Atherosclerosis by Upregulating Timp3 and Reck through Suppressing MicroRNA-205 Biogenesis. Theranostics, 7, 2186-2203. https://doi.org/10.7150/thno.18407
|
[26]
|
Wu, R., Shen, D., Sohun, H., et al. (2018) MiR-186, a Serum MicroRNA, Induces Endothelial Cell Apoptosis by Targeting SMAD6 in Kawasaki Disease. International Journal of Molecular Medicine, 41, 1899-1908.
https://doi.org/10.3892/ijmm.2018.3397
|
[27]
|
Wu, M.-H., Lin, M.-T., Chen, H.-C., et al. (2017) Postnatal Risk of Acquiring Kawasaki Disease: A Nationwide Birth Cohort Database Study. The Journal of Pediatrics, 180, 80-86.e2. https://doi.org/10.1016/j.jpeds.2016.09.052
|
[28]
|
Rong, X., Ge, D., Shen, D., et al. (2018) miR-27b Suppresses Endothelial Cell Proliferation and Migration by Targeting Smad7 in Kawasaki Disease. Cellular Physiology and Bio-chemistry, 48, 1804-1814.
https://doi.org/10.1159/000492354
|
[29]
|
Chu, M., Wu, R., Qin, S., et al. (2017) Bone Marrow-Derived MicroRNA-223 Works as an Endocrine Genetic Signal in Vascular Endothelial Cells and Participates in Vascular Injury from Kawasaki Disease. Journal of the American Heart Association, 6, e004878. https://doi.org/10.1161/JAHA.116.004878
|
[30]
|
He, M., Chen, Z., Martin, M., et al. (2017) miR-483 Targeting of CTGF Suppresses Endothelial-to-Mesenchymal Transition. Circulation Research, 120, 354-365. https://doi.org/10.1161/CIRCRESAHA.116.310233
|
[31]
|
Qiu, Y., Zhang, Y., Li, Y., et al. (2022) Molecular Mechanisms of Endothelial Dysfunction in Kawasaki-Disease-Associated Vasculitis. Frontiers in Cardiovascular Medicine, 9, Article 981010. https://doi.org/10.3389/fcvm.2022.981010
|
[32]
|
Zhang, W., Wang, Y., Zeng, Y., et al. (2017) Serum miR-200c and miR-371-5p as the Useful Diagnostic Biomarkers and Therapeutic Targets in Kawasaki Disease. BioMed Research International, 2017, Article ID: 8257862.
https://doi.org/10.1155/2017/8257862
|
[33]
|
Rife, E. and Gedalia, A. (2020) Kawasaki Disease: An Update. Current Rheumatology Reports, 22, Article No. 75.
https://doi.org/10.1007/s11926-020-00941-4
|
[34]
|
Onouchi, Y., Tamari, M., Takahashi, A., et al. (2006) A Genomewide Linkage Analysis of Kawasaki Disease: Evidence for Linkage to Chromosome 12. Journal of Human Genetics, 52, 179-190.
https://doi.org/10.1007/s10038-006-0092-3
|
[35]
|
Rajasekaran, K., Duraiyarasan, S., Adefuye, M., et al. (2022) Kawasaki Disease and Coronary Artery Involvement: A Narrative Review. Cureus, 14, e28358. https://doi.org/10.7759/cureus.28358
|
[36]
|
Kumrah, R., Vignesh, P., Rawat, A., et al. (2020) Immunogenetics of Kawasaki Disease. Clinical Reviews in Allergy & Immunology, 59, 122-139. https://doi.org/10.1007/s12016-020-08783-9
|
[37]
|
Parthasarathy, P., Agarwal, A., Chawla, K., et al. (2015) Up-coming Biomarkers for the Diagnosis of Kawasaki Disease: A Review. Clinical Biochemistry, 48, 1188-1194. https://doi.org/10.1016/j.clinbiochem.2015.02.013
|
[38]
|
Onouchi, Y., Ozaki, K., Buns, J.C., et al. (2010) Common Variants in CASP3 Confer Susceptibility to Kawasaki Disease. Human Molecular Genetics, 19, 2898-2906. https://doi.org/10.1093/hmg/ddq176
|
[39]
|
Yoon, K.L. (2015) Update of Genetic Susceptibility in Patients with Kawasaki Disease. Korean Journal of Pediatrics, 58, 84-88. https://doi.org/10.3345/kjp.2015.58.3.84
|
[40]
|
Wang, W., Lou, J., Zhong, R., et al. (2014) The Roles of Ca2+/NFAT Signaling Genes in Kawasaki Disease: Single- and Mul-tiple-Risk Genetic Variants. Scientific Reports, 4, Article No. 5208. https://doi.org/10.1038/srep05208
|
[41]
|
Onouchi, Y., Suzuki, Y., Suzuki, H., et al. (2011) ITPKC and CASP3 Polymorphisms and Risks for IVIG Unresponsiveness and Coronary Artery Lesion Formation in Kawasaki Disease. The Pharmacogenomics Journal, 13, 52-59.
https://doi.org/10.1038/tpj.2011.45
|
[42]
|
Kuo, H.-C., Yu, H.-R., Juo, S.-H., et al. (2010) CASP3 Gene Sin-gle-Nucleotide Polymorphism (rs72689236) and Kawasaki Disease in Taiwanese Children. Journal of Human Genetics, 56, 161-165.
https://doi.org/10.1038/jhg.2010.154
|
[43]
|
Onouchi, Y., Ozaki, K., Burns, J.C., et al. (2012) A Genome-Wide Association Study Identifies Three New Risk Loci for Kawasaki Disease. Nature Genetics, 44, 517-521. https://doi.org/10.1038/ng.2220
|
[44]
|
Lee, Y.-C., Kuo, H.-C., Chang, J.-S., et al. (2012) Two New Susceptibility Loci for Kawasaki Disease Identified through Genome-Wide Association Analysis. Nature Genetics, 44, 522-525. https://doi.org/10.1038/ng.2227
|
[45]
|
Kim, K.Y. and Kim, D.S. (2016) Recent Advances in Kawasaki Disease. Yonsei Medical Journal, 57, 15-21.
https://doi.org/10.3349/ymj.2016.57.1.15
|
[46]
|
Khor, C.C., Davila, S., Breunis, W.B., et al. (2011) Genome-Wide Association Study Identifies FCGR2A as a Susceptibility Locus for Kawasaki Disease. Nature Genetics, 43, 1241-1246. https://doi.org/10.1038/ng.981
|
[47]
|
Xu, S.-Z., Onouchi, Y., Fukazawa, R., et al. (2016) Variations in ORAI1 Gene Associated with Kawasaki Disease. PLOS ONE, 11, e0145486. https://doi.org/10.1371/journal.pone.0145486
|
[48]
|
Che, D., Pi, L., Fang, Z., et al. (2018) ABCC4 Variants Modify Susceptibility to Kawasaki Disease in a Southern Chinese Population. Disease Markers, 2018, Article ID: 8638096. https://doi.org/10.1155/2018/8638096
|
[49]
|
Shimizu, C., Oharaseki, T., Takahashi, K., et al. (2013) The Role of TGF-β and Myofibroblasts in the Arteritis of Kawasaki Disease. Human Pathology, 44, 189-198. https://doi.org/10.1016/j.humpath.2012.05.004
|
[50]
|
Ban, J.Y., Kim, S.K., Kang, S.W., et al. (2010) Association between Polymorphisms of Matrix Metalloproteinase 11 (MMP-11) and Kawasaki Disease in the Korean Population. Life Sciences, 86, 756-759.
https://doi.org/10.1016/j.lfs.2010.03.012
|
[51]
|
Kuo, H.-C., Chao, M.-C., Hsu, Y.-W., et al. (2012) CD40Gene Polymorphisms Associated with Susceptibility and Coronary Artery Lesions of Kawasaki Disease in the Taiwanese Population. The Scientific World Journal, 2012, Article ID: 520865. https://doi.org/10.1100/2012/520865
|