[1]
|
Yu, N. and Capasso, F. (2014) Flat Optics with Designer Metasurfaces. Nature Materials, 13, 139-150. https://doi.org/10.1038/nmat3839
|
[2]
|
Sun, S., He, Q., Hao, J., Xiao, S. and Zhou, L. (2019) Electromagnetic Metasurfaces: Physics and Applications. Advances in Optics and Photonics, 11, 380-479. https://doi.org/10.1364/AOP.11.000380
|
[3]
|
Zhou, Y., Guo, Z., Zhao, X., Wang, F., Yu, Z., Chen, Y., Liu, Z., Zhang, S., Sun, S. and Wu, X. (2022) Dual-Quasi Bound States in the Continuum Enabled Plasmonic Metasurfaces. Advanced Optical Materials, 10, 2200965. https://doi.org/10.1002/adom.202200965
|
[4]
|
Yang, Y., Kravchenko, I.I., Briggs, D.P. and Valentine, J. (2014) All-Dielectric Metasurface Analogue of Electromagnetically Induced Transparency. Nature Communications, 5, Article No. 5753. https://doi.org/10.1038/ncomms6753
|
[5]
|
Hwang, M.S., Lee, H.C., Kim, K.H., Jeong, K.Y., Kwon, S.H., Koshelev, K., Kivshar, Y. and Park, H.G. (2021) Ultralow-Threshold Laser Using Super-Bound States in the Continuum. Nature Communications, 12, Article No. 4135. https://doi.org/10.1038/s41467-021-24502-0
|
[6]
|
Huang, C., Zhang, C., Xiao, S., Wang, Y., Fan, Y., Liu, Y., Zhang, N., Qu, G., Ji, H., Han, J., et al. (2020) Ultrafast Control of Vortex Microlasers. Science, 367, 1018-1021. https://doi.org/10.1126/science.aba4597
|
[7]
|
Carletti, L., Koshelev, K., De Angelis, C. and Kivshar, Y. (2018) Giant Nonlinear Response at the Nanoscale Driven by Bound States in the Continuum. Physical Review Letters, 121, Article 033903. https://doi.org/10.1103/PhysRevLett.121.033903
|
[8]
|
Cheng, H., Chen, S.Q., Yu, P., Duan, X.Y., Xie, B.Y. and Tian, J.G. (2013) Dynamically Tunable Plasmonically Induced Transparency in Periodically Patterned Graphene Nanostrips. Applied Physics Letters, 103, Article 203112. https://doi.org/10.1063/1.4831776
|
[9]
|
Salvatore, S., David, S. and Willie, J.P. (2014) Liquid Crystal Metamaterial Absorber Spatial Light Modulator for THz Applications. Advanced Optical Materials, 2, 275-279. https://doi.org/10.1002/adom.201300384
|
[10]
|
Yang, J., Gurung, S., Bej, S., Ni, P. and Lee, H.W.H. (2022) Active Optical Metasurfaces: Comprehensive Review on Physics, Mechanisms and Prospective Applications. Reports on Progress in Physics, 85, Article 036101. https://doi.org/10.1088/1361-6633/ac2aaf
|
[11]
|
Benea-Chelmus, I.-C., Mason, S., Meretska, M.L., Elder, D.L., Kazakov, D., Shams-Ansari, A., Dalton, L.R. and Capasso, F. (2022) Gigahertz Free-Space Electro-Optic Modulators Based on Mie Resonances. Nature Communications, 13, Article No. 3170. https://doi.org/10.1038/s41467-022-30451-z
|
[12]
|
Chew, L.T., Dong, W., Liu, L., Zhou, X., Behera, J., Liu, H., Sreekanth, K.V., Mao, L., Cao, T., Yang, J. and Simpson, R.E. (2017) Chalcogenide Active Photonics. Proceedings of the SPIE, 10345, 103451B. https://doi.org/10.1117/12.2273732
|
[13]
|
Palik, E.D. (1998) Handbook of Optical Constants of Solids. Vol. 3, Academic, New York.
|
[14]
|
Liu, K., Lian, M., Qin, K., Zhang, S. and Cao, T. (2021) Active Tuning of Electromagnetically Induced Transparency from Chalcogenide-Only Metasurface. Light: Advanced Manufacturing, 2, Article No. 19. https://doi.org/10.37188/lam.2021.019
|