CD48与配体的相互作用及疾病中的研究进展
The Interaction between CD48 with Ligands and the Research Progress in Diseases
DOI: 10.12677/hjbm.2024.142032, PDF, HTML, XML, 下载: 31  浏览: 64 
作者: 詹雁吉, 钟 玲:重庆医科大学附属第二医院肾内科,重庆
关键词: CD48配体CD244 (2B4)CD2CD48 Ligand CD244 (2B4) CD2
摘要: 信号转导淋巴细胞激活分子(SLAM)受体家族(SLAMF)是CD2超家族的一组受体,它是由许多造血细胞上表达的几个成员组成的。CD48作为信号淋巴细胞激活分子家族的成员,是一种糖基磷脂酰肌醇(GPI)锚定的细胞表面蛋白,参与免疫细胞的黏附和激活等作用。CD48最初是在病毒诱导的B细胞上发现的,经研究发现其结合CD2和其他分子,但它在小鼠和人类系统中的高亲和力配体是CD244 (2B4),同时还发现CD48也与一些外源性配体相作用。本文主要介绍CD48结构及其与不同配体之间作用,以及讨论了CD48在哮喘、系统性红斑狼疮、炎症性肠病、血液系统及肝恶性肿瘤等疾病中作用的研究。
Abstract: The signal transduction lymphocyte activating molecule (SLAM) receptor family (SLAMF) is a group of receptors of the CD2 superfamily, which is composed of several members expressed on many hematopoietic cells. As a member of the family of signal lymphocyte activating molecules, CD48 is a cell surface protein anchored by glycosylphosphatidylinositol (GPI), which participates in the adhesion and activation of immune cells. CD48 was originally found in virus-induced B cells. It was found that it binds CD2 and other molecules, but its high affinity ligand in mouse and human system is CD244 (2B4). It is also found that CD48 also interacts with some exogenous ligands. This paper mainly introduces the structure of CD48 and its interaction with different ligands, and discusses the role of CD48 in asthma, systemic lupus erythematosus, inflammatory bowel disease, hematological system and liver malignant tumors.
文章引用:詹雁吉, 钟玲. CD48与配体的相互作用及疾病中的研究进展[J]. 生物医学, 2024, 14(2): 289-297. https://doi.org/10.12677/hjbm.2024.142032

1. 引言

免疫球蛋白超家族由人类1号染色体中心点两侧的两组基因编码,染色体p臂上的基因编码原型蛋白CD2和CD58 (也称为LFA-3),q臂上的基因则编码一组9个蛋白,统称为“SLAM家族”,包括CD150、CD48、CD229、CD244、CD84、CD352、CD319、CD353,以及CD84H [1] 。信号淋巴细胞激活标志物(SLAM)家族成员是免疫细胞功能的重要分子,在耐受、自身免疫和过敏中,通过调节细胞毒性、体液免疫、细胞存活、淋巴细胞发育和细胞粘附等进行免疫调节 [2] [3] 。CD48是免疫球蛋白超家族(IgSF)的CD2亚家族成员之一,是一种糖基磷脂酰肌醇(GPI)锚定蛋白,在小鼠中也称为人BLAST-1或BCM-1,在大鼠中称为OX-45。最初发现是在人转化B淋巴母细胞上的一种由EB病毒(EBV)感染诱导的分化抗原 [4] 。它通过与CD244、CD2等内源性配体和一些外源性配体相互作用参与机体复杂调节过程。本文将介绍CD48结构以及目前对CD48与不同配体之间作用的研究,以及在哮喘、系统性红斑狼疮、炎症性肠病、血液系统及肝恶性肿瘤等疾病中的研究。

2. CD48的结构及表达

CD48与其他CD2分子一样,包括一个可变V型结构域和一个恒定C2型结构域,C2结构域含有可形成二硫键的保守半胱氨酸残基 [5] 。与其他CD2分子不同之处在于其缺乏一个跨膜结构域,CD48通过一种限制在膜双分子层外侧的糖脂(GPI)连接到细胞表面上 [5] ,这使它能与富含胆固醇的脂质筏和相关的信号分子结合。正如许多GPI受体一样,CD48也以膜结合(mCD48)和可溶性(sCD48)的形式存在 [6] ,CD48在人血清和血浆中也以可溶形式被检测到 [7] ,但目前对其可溶形式如何产生尚不明确,有研究表明GPI连接的分子容易被磷脂酶如磷脂酶C和磷脂酶D所裂解 [8] ,这可能是循环中可溶性CD48的存在形式产生的原因。

CD48几乎在所有造血细胞上都有表达 [9] [10] ,尤其在炎症因素影响下可以增加CD48的表达。在严重哮喘患者的NK细胞、B细胞、T细胞上表达增加 [11] ;外周血单核细胞表面的CD48在干扰素α、β、γ增多的情况下表达增加 [12] ;嗜酸性粒细胞上的CD48在过敏反应中表达增加;COVID-19患者外周血淋巴细胞上mCD48的增加(与肺部浸润淋巴细胞平行)以及血清中sCD48水平的增加 [13] 等等。不但在炎症情况下影响CD48的表达,在一些恶性肿瘤当中也可以发现CD48表达的差异。有研究发现来自肝细胞癌组织的单核细胞,强烈表达CD48蛋白 [14] ;在多发性骨髓瘤的小鼠当中,异常骨髓瘤细胞上CD48表达上调 [15] ;最近一项对成人T细胞白血病/淋巴瘤(ATLL)的研究指出,侵袭性外周T细胞淋巴瘤(PTCL)中的其他亚组也表达低于正常T细胞的CD48水平 [16] 。CD48在多种造血细胞上的表达为我们提供了针对该靶点进行免疫治疗是否可行的新视角。

3. CD48与不同配体之间的作用

3.1. CD244 (2B4)

CD244 (SLAMF4)是一种存在于NK细胞、T细胞和其他类型免疫细胞中的1型跨膜蛋白 [1] 。该蛋白是一个关键的细胞表面受体,和CD48一样属于SLAM家族,在免疫调节中发挥受体的功能 [17] 。CD244的细胞外区域由N端V-Ig和C端C2-Ig结构域组成,细胞质尾部包含4个细胞内酪氨酸开关基序(ITSM)。在CD244-CD48相互作用时,一种含有SH2结构域的SAP家族适配器(包括SAP及其同系物EAT-2和ERT)被募集到CD244细胞质区域的酪氨酸开关基序(ITSM)中并介导下游信号传导 [18] ,启动了一系列信号传导事件,导致免疫突触的产生以及T淋巴细胞和NK细胞定向释放含有穿孔素和颗粒酶的溶细胞颗粒 [19] 来调节多种免疫事件。SAP家族在免疫调节中十分重要,罕见的原发性免疫缺陷疾病X连锁淋巴组织增生性(XLP)-1疾病的病因就是由编码SAP的Sh2d1a1突变 [3] [20] 。

CD244与免疫细胞上的CD48结合,主要通过反式相互作用调节免疫反应 [21] 。CD48-CD244结合的功能结果在不同的细胞中可能有所不同。CD48和2B4在NK细胞上的相互作用会诱导细胞的扩张和激活 [22] ,有研究指出C244上带电的氨基酸的存在,特别是Lys68和Glu70,它们在CD48/CD244相互作用介导NK细胞的活化至关重要 [23] 。除了反式相互作用外,在NK细胞中,CD244和CD48之间也存在顺式相互作用 [24] ,例如在NK细胞上可以通过限制反式结合来下调CD244的表达和NK的细胞毒性。值得注意的是,在反式和顺式相互作用中所涉及的结合部位是相同的,而顺式结合是通过2B4中的连接域来实现的 [24] 。同时有研究表明,CD48作为人类天然淋巴细胞前体细胞(ILCP)的表面标志物,与CD244的结合可以激活CD244信号传导促进ILCP中先天淋巴细胞(ILC2)的发育,而ILC2的发育可能通过TGFB1和IL-10等抑制因子影响NK细胞的发育或扩增 [25] 。并且,NK细胞上的2B4和T细胞上的CD48之间的结合会增加T细胞的增殖 [26] 。CD244-CD48在T细胞上的结合导致T细胞增殖和细胞毒性活性增加 [27] 。树突状细胞上CD48与CD8+ T细胞的CD244结合,通过抑制介导的成熟树突状细胞凋亡的IFN-β和IFN-β以及促进颗粒酶B抑制剂PI-9的产生,从而延长T细胞活化的有效时间以及延长树突状细胞的存活 [28] 。此外,CD48-CD244相互作用是“过敏效应单元”(AEU)的关键组成部分 [9] ,在嗜酸性粒细胞和肥大细胞MCs之间AEU的形成和激活中至关重要,使嗜酸性粒细胞能够共同刺激IgE介导的肥大细胞活化 [29] 。从以上这些研究中,CD48和2B4可能成为某些疾病的治疗靶点,这取决于它的表达和功能。

3.2. CD2

CD2作为免疫球蛋白超家族的跨膜糖蛋白成员之一,主要在T细胞,NK细胞,胸腺细胞和树突状细胞上表达 [30] 。CD2的配体在小鼠中是CD48,在人类中CD58是其高亲和力配体 [31] [32] ,两者具有高度的同源性,在大鼠上的研究表明CD48通过其NH2末端IgSF结构域上以低亲和力结合CD2,并且其结合与糖基化无关 [33] 。T细胞上的CD2-CD48顺式相互作用在促进T细胞受体(TCR)信号传导的同时也是T细胞活化所必需的,这与其和TCR复合物、蛋白酪氨酸激酶(LCK)组分相互作用的能力相关 [34] 。人类自然杀伤(NK)细胞在其表面表达丰富的2B4和CD2水平,2B4/CD48和CD2/CD58相互作用在小鼠和人NK细胞中具有差异和重叠的作用。同时,CD2也作为同种异体反应的靶点之一,抗CD2抗体治疗促进了许多小鼠模型的移植物存活,例如联合应用抗CD2和抗CD48单抗可使同种异体心脏移植物无限期存活,而单独应用任何一种抗体对移植物存活的影响较小 [35] 。然而因为在人体中CD2的高亲和力配体与小鼠不同,对人体中抗CD2和抗CD48抗体治疗的研究结果可能与小鼠中有差异,这需要我们的进一步探讨。

3.3. 硫酸肝素(Heparan Sulfate)

硫酸乙酰肝素(HS)是一种高度硫酸化的线性多糖(一种糖胺聚糖或GAG),存在于细胞外基质(ECM)和哺乳动物细胞表面 [36] ,它与多种蛋白质相互作用以介导许多生物学和病理功能,例如癌症,炎症和病毒感染。有研究发现CD48与上皮细胞上的硫酸乙酰肝素结合产生针对碳水化合物结构的高度特异性抗体,并提出CD48/硫酸乙酰肝素相互作用在淋巴细胞和特定组织之间的相互作用中可能存在重要作用 [37] 。然而目前关于硫酸肝素在疾病中的具体作用机制尚不明确,需要进一步的探讨针对CD48与硫酸肝素结合靶点治疗的可行性。

3.4. 外源性受体

除了上述内源性受体外,CD48也能与外源性分子结合作用。作为细菌上FimH的配体,CD48通过其GPI链上的甘露糖残基与细菌凝集素FimH结合 [38] ,在肥大细胞中两者的结合可以触发肥大细胞肿瘤坏死因子α反应和吞噬,并促进微生物进入巨噬细胞 [39] 。Muñoz等人确定GPI锚定蛋白CD48是暴露于分枝杆菌后激活的关键介质,发现结核分枝杆菌与小鼠巨噬细胞上的CD48直接结合导致巨噬细胞脱颗粒,这使得MC在调节结核分枝杆菌感染的早期炎症和免疫反应中起关键作用 [40] 。在金黄色葡萄球菌感染中,其毒素通过CD48与嗜酸性粒细胞相互作用,影响EPO和IL-8释放和嗜酸性粒细胞对金黄色葡萄球菌的趋化性,从而下调金黄色葡萄球菌对嗜酸性粒细胞的刺激作用 [41] 。以上研究说明,CD48与外源性受体的结合可能在机体粘膜免疫和感染具有更显著的作用。

4. CD48在疾病中的作用

4.1. 哮喘

嗜酸性粒细胞是主要的炎症性白细胞,在过敏性哮喘期间浸润气道并促进炎症 [42] 。有研究探究CD48-CD2-2B4轴在过敏性嗜酸性粒细胞起到炎症发病机制,在过敏原激发前给与抗CD48,抗CD2和抗2B4的中和抗体,结果表明给与抗CD48中和抗体的小鼠显着降低了支气管肺泡灌洗液(BALF)中的嗜酸性粒细胞炎症和细胞因子(包括Th2细胞因子IL-5,IL-4和IL-13;以及促炎细胞因子)的表达。此外,它消除了肺部炎症(肺泡间隙、血管周围和支气管周围)、气道平滑肌增厚、上皮脱落、杯状细胞增生和粘液产生。而单独抗2B4处理的小鼠没有显著影响 [10] 。

CD48调节人和小鼠的嗜酸性粒细胞的激活。脱颗粒是支持过敏性哮喘和其他嗜酸性粒细胞驱动疾病期间组织炎症发展和维持的关键事件。基于IL-3已被证明可以诱导嗜酸性粒细胞中的NF-κB活化 [43] ,而且CD48是NF-κB的靶基因 [44] ,有研究发现IL-3诱导ORMDL3和CD48表达,而ORMDL3的过表达与NF-κB激活有关,进一步提出哮喘易感基因ORMDL3调节IL-3诱导的嗜酸性粒细胞NF-κB活化,进而调节CD48的表达以及其介导的脱颗粒作用,以促进过敏性哮喘的气道嗜酸性粒细胞增多和炎症 [45] 。

此外,sCD48作为CD48可溶形式具有抗炎活性,可以与嗜酸性粒细胞上的CD244结合,并作为拮抗剂或诱饵受体阻断CD48-CD244结合、信号传导和激活 [46] 。嗜酸性粒细胞上的CD244可被抗CD244 mAb激活 [11] ,而sCD48降低了抗CD244 mAb激活的嗜酸性粒细胞上的一种高度参与CD244活化信号通路的信号转导分子Vav-1磷酸化 [11] [47] 从而影响后续嗜酸性粒细胞的激活。sCD48在中度哮喘患者中升高,在严重哮喘患者中下调,这些有效保护机制在严重哮喘中丧失。

4.2. 血液系统肿瘤

许多研究表明,不同类型癌症患者的NK细胞效应功能严重受损,与预后不良和死亡率增加相关 [16] [48] 。急性髓系白血病(AML)是公认的成人最普遍的急性白血病类型 [49] 。血红素加氧酶1 (HO1)是一种应激诱导、细胞保护和抗氧化酶,其催化血红素降解产生的一氧化碳是公认主要免疫调节和免疫抑制介质。有研究指出HO1在AML患者中高表达,并与CD48水平呈负相关。HO1特异性地下调自然杀伤(NK)细胞上激活受体2B4的配体CD48水平,降低NK细胞的细胞毒作用 [48] 。造血干细胞中组蛋白3赖氨酸27乙酰化水平的增加能够促进CD48的转录和表达 [50] 。HO1的过表达增加了AML细胞中的Sirt1,使组蛋白H3K27脱乙酰抑制CD48转录和表达 [48] ,只是转录因子如何将Sirt1募集到CD48启动子中仍不清楚。在未来靶向HO1/Sirt1/CD48-2B4轴可能成为治疗AML的有效方案。

成人T细胞白血病/淋巴瘤(ATLL)是一种预后不良的成熟T细胞肿瘤。NK细胞可以通过产生细胞因子和趋化因子(包括IFNγ)来协调免疫反应并帮助对癌症的适应性免疫反应 [51] 。实验证实CD48基因敲除的ATL细胞对NK细胞直接杀伤的获得性抵抗 [16] 。CD48表达的下调似乎是T细胞肿瘤之间的一种共同现象,赋予这些恶性细胞对NK细胞监视的抵抗力。JAK-STAT信号通路在包括生存、增殖和分化在内的各种关键细胞过程中起着重要的作用。该通路的激活通常是由细胞因子(如IL-6、IL-10等)结合诱导,使JAK和STAT蛋白的磷酸化,进而调节各种靶基因的转录 [52] [53] 。在原代ATLL细胞中很少显示激活的STAT5 [54] ,并且在大多数ATLL病例对IL-2作用似乎没有反应 [55] ,IL2/STAT5轴的破坏降低了IL2依赖的ATLL细胞系中CD48的表达 [16] 。

4.3. 系统性红斑狼疮SLE

有研究证实SLAMF2−/−[B6.129]表型的小鼠在3个月时表现出自身抗体,在6个月时表现出严重的增殖性肾小球肾炎,但小鼠不会产生任何自发T细胞活化的证据 [56] ,并且在B6遗传背景的狼疮易感小鼠模型当中,CD48的缺乏可使小鼠出现进行性自身免疫性疾病和致命性肾炎损害 [57] 。这表明CD48在这种狼疮模型中可能起到免疫调节作用。SLE中CD4+ T细胞的CD48 mRNA水平升高 [58] ,CD4+和CD8+ T细胞表面的CD48显著上调,但其表达与T细胞分化状态无关 [59] 。CD48通过参与促进肌动蛋白细胞骨架重组和将相关脂筏的招募到TCR相关的激活帽来增强TCR启动的早期反应 [60] 。狼疮T细胞具有更快的肌动蛋白聚合动力学,以及预聚集的脂筏富集了活化的Syk和Fcε受体的共同γ链 [61] 。此外,脂筏以预先聚集的形式存在于狼疮T细胞中,从而有助于狼疮T细胞的快速信号反应和钙通量升高 [61] 。但是狼疮T细胞上CD48水平的升高是否参与了脂筏的预先聚集,或者靶向CD48是否可以破坏脂筏的形成,从而纠正狼疮中的异常信号反应,还需更加深入的研究。

4.4. 炎症性肠病

炎症性肠病(IBD)是由结肠细菌诱导的细菌和自身抗原的免疫反应失衡介导的慢性复发性疾病。在CD45RBhi结肠炎细胞转移模型中,T细胞和巨噬细胞上的CD48在T细胞在转移给RAG-/-受体时引发的结肠炎中起着关键的调节作用。在体外,APC或T细胞上CD48的缺失减少了IL-2的产生,尤其当两种细胞上都缺失CD48时更显著。并且在发病前或发病后给予抗CD48单抗可减轻结肠炎,此外,巨噬细胞表面CD48的缺乏也削弱了它们对细菌成分的反应 [62] 。提示CD48可能是炎症性肠病的治疗靶点。

4.5. 肝恶性肿瘤

肝细胞癌(HCC)是全球癌症相关死亡的第三大原因。调节性T (Treg)细胞是肿瘤相关免疫抑制的关键介质。生长分化因子15 (GDF15)是一种转化生长因子β (TGF-β)家族成员,在生理条件下表达水平非常低,但在炎症相关疾病和癌症中显著上调 [63] [64] 。一项最近的研究发现作为Treg细胞的关键启动子的GDF15在肝细胞癌中上调,促进外周的诱导性Treg细胞的产生,并通过T细胞的受体CD48和转录后机制调节天然Treg细胞的抑制功能 [65] 。在此项研究中,将CD48确定为GDF15的新型受体,其间的相互作用远高于CD48和CD2以及CD48和CD244之间的相互作用 [65] 。因此,GDF15可以竞争性地抑制CD48的配体CD2和CD244的结合,从而抑制CD48的下游途径。GDF15与CD48的相互作用消除了CD48诱导的TCR下游ERK/AP-1途径的激活,从而下调STUB1来阻断FOXP3泛素化 [65] 。CD48是免疫系统中发现的第一个GDF15受体,但研究者认为CD48不能单独传递信号,所以更加倾向于将CD48称为GDF15的结合伴侣而不是受体 [65] 。

5. 总结

在过去的研究中,CD48作为SLAM受体家族成员之一是免疫反应的重要调节因子研究越来越多。CD48在人类和小鼠中几乎所有的造血细胞上都有表达,参与广泛的免疫炎症调节。CD48内源性配体包括其相互作用力高于CD2十倍左右的高亲和力配体CD244 (2B4),以及上皮细胞上的硫酸肝素。外源性配体也丰富了CD48作用。我们已经了解到CD48参与了各种各样的免疫反应,CD48及其与配体作用已被证明在许多细胞间相互作用中起着重要作用,在很多免疫炎症疾病甚至肿瘤进展过程中有着不可或缺的影响,从粒细胞活性到T细胞激活,再到CTL或NK功能和抗菌免疫。sCD48与原发性干燥综合征疾病活动度、白血病、哮喘等相关 [11] [66] 。血液系统恶性肿瘤及肝恶性肿瘤通过CD48信号调节NK细胞功能,进而影响肿瘤发展 [14] [48] 。CD48的广泛表达,加上研究其功能的工具有限,给阐明其免疫调节功能带来了挑战,目前CD48与其配体具体机制及后续调控通路尚需更进一步的研究,在未来抗CD48单抗或抗CD48受体作用可能成为新的治疗靶点。

参考文献

[1] Dragovich, M.A.and Mor, A. (2018) The SLAM Family Receptors: Potential Therapeutic Targets for Inflammatory and Autoimmune Diseases. Autoimmunity Reviews, 17, 674-682.
https://doi.org/10.1016/j.autrev.2018.01.018
[2] Calpe, S., Wang, N., Romero, X., Berger, S.B., Lanyi, A., Engel, P., et al. (2008) The SLAM and SAP Gene Families Control Innate and Adaptive Immune Responses. Advances in Immunology, 97, 177-250.
https://linkinghub.elsevier.com/retrieve/pii/S0065277608000047
https://doi.org/10.1016/S0065-2776(08)00004-7
[3] Cannons, J.L., Tangye, S.G. and Schwartzberg, P.L. (2011) SLAM Family Receptors and SAP Adaptors in Immunity. Annual Review of Immunology, 29, 665-705.
https://doi.org/10.1146/annurev-immunol-030409-101302
[4] Thorley-Lawson, D.A., Schooley, R.T., Bhan, A.K. and Nadler, L.M. (1982) Epstein-Barr Virus Superinduces a New Human B Cell Differentiation Antigen (B-LAST 1) Expressed on Transformed Lymphoblasts. Cell, 30, 415-425.
https://doi.org/10.1016/0092-8674(82)90239-2
[5] Staunton, D.E., Fisher, R.C., LeBeau, M.M., Lawrence, J.B., Barton, D.E., Francke, U., et al. (1989) Blast-1 Possesses a Glycosyl-Phosphatidylinositol (GPI) Membrane Anchor, Is Related to LFA-3 and OX-45, and Maps to Chromosome 1q21-23. Journal of Experimental Medicine, 169, 1087-1099.
https://doi.org/10.1084/jem.169.3.1087
[6] McArdel, S.L., Terhorst, C. and Sharpe, A.H. (2016) Roles of CD48 in Regulating Immunity and Tolerance. Clinical immunology (Orlando, Fla.), 164, 10-20.
https://doi.org/10.1016/j.clim.2016.01.008
[7] Smith, G.M., Biggs, J., Norris, B., Anderson-Stewart, P. and Ward, R. (1997) Detection of a Soluble Form of the Leukocyte Surface Antigen CD48 in Plasma and Its Elevation in Patients with Lymphoid Leukemias and Arthritis. Journal of Clinical Immunology, 17, 502-509.
https://doi.org/10.1023/A:1027327912204
[8] Metz, C.N., Brunner, G., Choi-Muira, N.H., Nguyen, H., Gabrilove, J., Caras, I.W., et al. (1994) Release of GPI-Anchored Membrane Proteins by a Cell-Associated GPI-Specific Phospholipase D. The EMBO Journal, 13, 1741-1751.
https://doi.org/10.1002/j.1460-2075.1994.tb06438.x
[9] Elishmereni, M., Fyhrquist, N., Singh Gangwar, R., Lehtimäki, S., Alenius, H. and Levi-Schaffer, F. (2014) Complex 2B4 Regulation of Mast Cells and Eosinophils in Murine Allergic Inflammation. Journal of Investigative Dermatology, 134, 2928-2937.
https://doi.org/10.1038/jid.2014.280
[10] Munitz, A., Bachelet, I., Finkelman, F.D., Rothenberg, M.E. and Levi-Schaffer, F. (2007) CD48 Is Critically Involved in Allergic Eosinophilic Airway Inflammation. American Journal of Respiratory and Critical Care Medicine, 175, 911-918.
https://doi.org/10.1164/rccm.200605-695OC
[11] Gangwar, R.S., Minai-Fleminger, Y., Seaf, M., Gutgold, A., Shikotra, A., Barber, C., et al. (2017) CD48 on Blood Leukocytes and in Serum of Asthma Patients Varies with Severity. Allergy, 72, 888-895.
https://doi.org/10.1111/all.13082
[12] Tissot, C., Rebouissou, C., Klein, B. and Mechti, N. (1997) Both Human α/β and γ Interferons Upregulate the Expression of CD48 Cell Surface Molecules. Journal of Interferon & Cytokine Research, 17, 17-26.
https://doi.org/10.1089/jir.1997.17.17
[13] Pahima, H., Zaffran, I., Ben-Chetrit, E., Jarjoui, A, Gaur, P., Manca, M.L., et al. (2022) COVID-19 Patients Are Characterized by Dysregulated Levels of Membrane and Soluble CD48. Annals of Allergy, Asthma & Immunology, 208, Article 161.04.
https://doi.org/10.4049/jimmunol.208.Supp.161.04
[14] Wu, Y., Kuang, D.M., Pan, W.D., Wan, Y.L., Lao, X.M., Wang, D., et al. (2013) Monocyte/Macrophage-Elicited Natural Killer Cell Dysfunction in Hepatocellular Carcinoma Is Mediated by CD48/2B4 Interactions. Hepatology, 57, 1107-1116.
https://doi.org/10.1002/hep.26192
[15] Hosen, N., Ichihara, H., Mugitani, A., Aoyama, Y., Fukuda, Y., Kishida, S., et al. (2012) CD48 as a Novel Molecular Target for Antibody Therapy in Multiple Myeloma. British Journal of Haematology, 156, 213-224.
https://doi.org/10.1111/j.1365-2141.2011.08941.x
[16] Chiba, M., Shimono, J., Ishio, T., Takei, N., kasahara, K., Ogasawara, R., et al. (2022) Genome-Wide CRISPR Screens Identify CD48 Defining Susceptibility to NK Cytotoxicity in Peripheral T-Cell Lymphomas. Blood, 140, 1951-1963.
https://doi.org/10.1182/blood.2022015646
[17] Mardomi, A., Mohammadi, N., Khosroshahi, H.T. and Abediankenari, S. (2020) An Update on Potentials and Promises of T Cell Co-Signaling Molecules in Transplantation. Journal of Cellular Physiology, 235, 4183-4197.
https://doi.org/10.1002/jcp.29369
[18] Dong, Z., Cruz-Munoz, M.E., Zhong, M.C., Chen, R., Latour, S. and Veillette, A. (2009) Essential Function for SAP Family Adaptors in the Surveillance of Hematopoietic Cells by Natural Killer Cells. Nature Immunology, 10, 973-980.
https://doi.org/10.1038/ni.1763
[19] Claus, M., Urlaub, D., Fasbender, F. and Watzl, C. (2019) SLAM Family Receptors in Natural Killer Cells-Mediators of Adhesion, Activation and Inhibition via cis and Trans Interactions. Clinical Immunology, 204, 37-42.
https://doi.org/10.1016/j.clim.2018.10.011
[20] Nichols, K.E., Harkin, D.P., Levitz, S., Krainer, M., Kolquist, K.A., Genovese, C., et al. (1998) Inactivating Mutations in an SH2 Domain-Encoding Gene in X-Linked Lymphoproliferative Syndrome. Proceedings of the National Academy of Sciences of the United States of America, 95, 13765-13770.
https://doi.org/10.1073/pnas.95.23.13765
[21] Pahima, H., Puzzovio, P.G. and Levi-Schaffer, F. (2019) 2B4 and CD48: A Powerful Couple of the Immune System. Clinical Immunology, 204, 64-68.
https://doi.org/10.1016/j.clim.2018.10.014
[22] Taniguchi, R.T., Guzior, D. and Kumar, V. (2007) 2B4 Inhibits NK-Cell Fratricide. Blood, 110, 2020-2023.
https://doi.org/10.1182/blood-2007-02-076927
[23] Mathew, S.O., Kumaresan, P.R., Lee, J.K., Huynh, V.T. and Mathew, P.A. (2005) Mutational Analysis of the Human 2B4 (CD244)/CD48 Interaction: Lys 68 and Glu 70 in the V Domain of 2B4 Are Critical for CD48 Binding and Functional Activation of NK Cells. The Journal of Immunology, 175, 1005-1013.
https://doi.org/10.4049/jimmunol.175.2.1005
[24] Claus, M., Wingert, S. and Watzl, C. (2016) Modulation of Natural Killer Cell Functions by Interactions between 2B4 and CD48 in cis and in Trans. Open Biology, 6, Article 160010.
https://doi.org/10.1098/rsob.160010
[25] Tufa, D.M., Yingst, A.M., Trahan, G.D., Shank, T., Jones, D., Shim, S., et al. (2020) Human Innate Lymphoid Cell Precursors Express CD48 That Modulates ILC Differentiation through 2B4 Signaling. Science Immunology, 5, eaay4218.
https://doi.org/10.1126/sciimmunol.aay4218
[26] Assarsson, E., Kambayashi, T., Schatzle, J.D., Cramer, S.O., von Bonin, A., Jensen, P.E., et al. (2004) NK Cells Stimulate Proliferation of T and NK Cells through 2B4/CD48 Interactions. The Journal of Immunology, 173, 174-180.
https://doi.org/10.4049/jimmunol.173.1.174
[27] Lee, K.M., Bhawan, S., Majima, T., Wei, H., Nishimura, M.I., Yagita, H., et al. (2003) Cutting Edge: The NK Cell Receptor 2B4 Augments Antigen-Specific T Cell Cytotoxicity through CD48 Ligation on Neighboring T Cells. The Journal of Immunology, 170, 4881-4885.
https://doi.org/10.4049/jimmunol.170.10.4881
[28] Kis-Toth, K. and Tsokos, G.C. (2014) Engagement of SLAMF2/CD48 Prolongs the Time Frame of Effective T Cell Activation by Supporting Mature Dendritic Cell Survival. The Journal of Immunology, 192, 4436-4442.
https://doi.org/10.4049/jimmunol.1302909
[29] Elishmereni, M., Bachelet, I., Nissim Ben-Efraim, A.H., Mankuta, D. and Levi-Schaffer, F. (2013) Interacting Mast Cells and Eosinophils Acquire an Enhanced Activation State in vitro. Allergy, 68, 171-179.
https://doi.org/10.1111/all.12059
[30] Matsui, T., Connolly, J.E., Michnevitz, M., Chaussabel, D., Yu, C.I., Glaser, C., et al. (2009) CD2 Distinguishes Two Subsets of Human Plasmacytoid Dendritic Cells with Distinct Phenotype and Functions. The Journal of Immunology, 182, 6815-6823.
https://doi.org/10.4049/jimmunol.0802008
[31] Evans, E.J., Castro, M.A.A., O’Brien, R., Kearney, A., Walsh, H., Sparks, L.M., et al. (2006) Crystal Structure and Binding Properties of the CD2 and CD244 (2B4)-Binding Protein, CD48. Journal of Biological Chemistry, 281, 29309-19320.
https://doi.org/10.1074/jbc.M601314200
[32] Dustin, M.L., Sanders, M.E., Shaw, S. and Springer, T.A. (1987) Purified Lymphocyte Function-Associated Antigen 3 Binds to CD2 and Mediates T Lymphocyte Adhesion. Journal of Experimental Medicine, 165, 677-692.
https://doi.org/10.1084/jem.165.3.677
[33] Van Der Merwe, P.A., McPherson, D.C., Brown, M.H., Barclay, A.N., Cyster, J.G., Williams, A.F., et al. (1993) The NH2-Terminal Domain of Rat CD2 Binds Rat CD48 with a Low Affinity and Binding Does not Require Glycosylation of CD2. European Journal of Immunology, 23, 1373-1377.
https://doi.org/10.1002/eji.1830230628
[34] Li, B., Lu, Y., Zhong, M.C., Qian, J., Li, R., Davidson, D., et al. (2022) cis Interactions between CD2 and Its Ligands on T Cells Are Required for T Cell Activation. Science Immunology, 7, eabn6373.
https://doi.org/10.1126/sciimmunol.abn6373
[35] Qin, L., Chavin, K.D., Lin, J., Yagita, H. and Bromberg, J.S. (1994) Anti-CD2 Receptor and Anti-CD2 Ligand (CD48) Antibodies Synergize to Prolong Allograft Survival. Journal of Experimental Medicine, 179, 341-346.
https://doi.org/10.1084/jem.179.1.341
[36] Whitelock, J.M. and Iozzo, R.V. (2005) Heparan Sulfate: A Complex Polymer Charged with Biological Activity. Chemical Reviews, 105, 2745-2764.
https://doi.org/10.1021/cr010213m
[37] Ianelli, C.J., DeLellis, R. and Thorley-Lawson, D.A. (1998) CD48 Binds to Heparan Sulfate on the Surface of Epithelial Cells. Journal of Biological Chemistry, 273, 23367-23375.
https://doi.org/10.1074/jbc.273.36.23367
[38] Baorto, D.M., Gao, Z., Malaviya, R., Dustin, M.L., van der Merwe, A., Lublin, D.M., et al. (1997) Survival of FimH-Expressing Enterobacteria in Macrophages Relies on Glycolipid Traffic. Nature, 389, 636-639.
https://doi.org/10.1038/39376
[39] Möller, J., Lühmann, T., Chabria, M., Hall, H. and Vogel, V. (2013) Macrophages Lift off Surface-Bound Bacteria Using a Filopodium-Lamellipodium Hook-and-Shovel Mechanism. Scientific Reports, 3, Article No. 2884.
https://doi.org/10.1038/srep02884
[40] Muñoz, S., Hernández-Pando, R., Abraham, S.N. and Enciso, J.A. (2003) Mast Cell Activation by Mycobacterium Tuberculosis: Mediator Release and Role of CD48. The Journal of Immunology, 170, 5590-5596.
https://doi.org/10.4049/jimmunol.170.11.5590
[41] Gangwar, R.S. and Levi-Schaffer, F. (2016) sCD48 Is Anti-Inflammatory in Staphylococcus Aureus Enterotoxin B-Induced Eosinophilic Inflammation. Allergy, 71, 829-839.
https://doi.org/10.1111/all.12851
[42] Hamid, Q. and Tulic, M. (2009) Immunobiology of Asthma. Annual Review of Physiology, 71, 489-507.
https://doi.org/10.1146/annurev.physiol.010908.163200
[43] Ip, W.K., Wong, C.K., Wang, C.B., Tian, Y.P. and Lam, C.W.K. (2005) Interleukin-3,-5, and Granulocyte Macrophage Colony-Stimulating Factor Induce Adhesion and Chemotaxis of Human Eosinophils via p38 Mitogen-Activated Protein Kinase and Nuclear Factor κB. Immunopharmacology and Immunotoxicology, 27, 371-393.
https://doi.org/10.1080/08923970500240925
[44] Klaman, L.D. and Thorley-Lawson, D.A. (1995) Characterization of the CD48 Gene Demonstrates a Positive Element that Is Specific to Epstein-Barr Virus-Immortalized B-Cell Lines and Contains an Essential NF-Kappa B Site. Journal of Virology, 69, 871-881.
https://doi.org/10.1128/jvi.69.2.871-881.1995
[45] Ha, S.G., Ge, X.N., Bahaie, N.S., Kang, B.N., Rao, A., Rao, S.P., et al. (2013) ORMDL3 Promotes Eosinophil Trafficking and Activation via Regulation of Integrins and CD48. Nature Communications, 4, Article No. 2479.
https://doi.org/10.1038/ncomms3479
[46] Munitz, A., Bachelet, I., Fraenkel, S., Katz, G., Mandelboim, O., Simon, H.U., et al. (2005) 2B4 (CD244) Is Expressed and Functional on Human Eosinophils. The Journal of Immunology, 174, 110-118.
https://doi.org/10.4049/jimmunol.174.1.110
[47] Chen, R., Relouzat, F., Roncagalli, R., Aoukaty, A., Tan, R., Latour, S., et al. (2004) Molecular Dissection of 2B4 Signaling: Implications for Signal Transduction by SLAM-Related Receptors. Molecular and Cellular Biology, 24, 5144-5156.
https://doi.org/10.1128/MCB.24.12.5144-5156.2004
[48] Zhang, T., Fang, Q., Liu, P., Wang, P., Feng, C. and Wang, J. (2022) Heme Oxygenase 1 Overexpression Induces Immune Evasion of Acute Myeloid Leukemia against Natural Killer Cells by Inhibiting CD48. Journal of Translational Medicine, 20, Article No. 394.
https://doi.org/10.1186/s12967-022-03589-z
[49] Siegel, R.L., Miller, K.D., Fuchs, H.E. and Jemal, A. (2021) Cancer Statistics, 2021. CA: A Cancer Journal for Clinicians, 7, 7-33.
https://doi.org/10.3322/caac.21654
[50] Umemoto, T., Johansson, A., Ahmad, S.A.I., Hashimoto, M., Kubota, S., Kikuchi, K., et al. (2022) ATP Citrate Lyase Controls Hematopoietic Stem Cell Fate and Supports Bone Marrow Regeneration. The EMBO Journal, 41, e109463.
https://onlinelibrary.wiley.com/doi/10.15252/embj.2021109463
https://doi.org/10.15252/embj.2021109463
[51] Bald, T., Krummel, M.F., Smyth, M.J. and Barry, K.C. (2020) The NK Cell-Cancer Cycle: Advances and New Challenges in NK Cell-Based Immunotherapies. Nature Immunology, 21, 835-847.
https://doi.org/10.1038/s41590-020-0728-z
[52] O’Shea, J.J., Holland, S.M. and Staudt, L.M. (2013) JAKs and STATs in Immunity, Immunodeficiency, and Cancer. The New England Journal of Medicine, 368, 161-170.
https://doi.org/10.1056/NEJMra1202117
[53] Stark, G.R. and Darnell, J.E. (2012) The JAK-STAT Pathway at Twenty. Immunity, 36, 503-514.
https://doi.org/10.1016/j.immuni.2012.03.013
[54] Morichika, K., Karube, K., Kayo, H., Uchino, S., Nishi, Y., Nakachi, S., et al. (2019) Phosphorylated STAT 3 Expression Predicts Better Prognosis in Smoldering Type of Adult T-Cell Leukemia/Lymphoma. Cancer Science, 110, 2982-2991.
https://doi.org/10.1111/cas.14114
[55] Maeda, M., Tanabe-Shibuya, J., Miyazato, P., Masutani, H., Yasunaga, J.I, Usami, K., et al. (2020) IL-2/IL-2 Receptor Pathway Plays a Crucial Role in the Growth and Malignant Transformation of HTLV-1-Infected T Cells to Develop Adult T-Cell Leukemia. Frontiers in Microbiology, 11, Article 356.
https://doi.org/10.3389/fmicb.2020.00356
[56] Keszei, M., Latchman, Y.E., Vanguri, V.K., Brown, D.R., Detre, C., Morra, M., et al. (2011) Auto-Antibody Production and Glomerulonephritis in Congenic Slamf1-/- and Slamf2-/- [B6.129] but not in Slamf1-/- and Slamf2-/- [BALB/c.129] Mice. International Immunology, 23, 149-158.
https://doi.org/10.1093/intimm/dxq465
[57] Koh, A.E., Njoroge, S.W., Feliu, M., Cook, A., Selig, M.K., Latchman, Y.E., et al. (2011) The SLAM Family Member CD48 (Slamf2) Protects Lupus-Prone Mice from Autoimmune Nephritis. Journal of Autoimmunity, 37, 48-57.
https://doi.org/10.1016/j.jaut.2011.03.004
[58] Balada, E., Castro-Marrero, J., Pujol, A.P., Torres-Salido, M.T., Vilardell-Tarrés, M. and Ordi-Ros, J. (2011) Enhanced Transcript Levels of CD48 in CD4 T Cells from Systemic Lupus Erythematosus Patients. Immunobiology, 216, 1034-1037.
https://doi.org/10.1016/j.imbio.2011.03.004
[59] Karampetsou, M.P., Comte, D., Kis-Toth, K., Kyttaris, V.C. and Tsokos, G.C. (2017) Expression Patterns of Signaling Lymphocytic Activation Molecule Family Members in Peripheral Blood Mononuclear Cell Subsets in Patients with Systemic Lupus Erythematosus. PLOS ONE, 12, e0186073.
https://doi.org/10.1371/journal.pone.0186073
[60] Moran, M. and Miceli, M.C. (1998) Engagement of GPI-Linked CD48 Contributes to TCR Signals and Cytoskeletal Reorganization. Immunity, 9, 787-796.
https://doi.org/10.1016/S1074-7613(00)80644-5
[61] Krishnan, S., Nambiar, M.P., Warke, V.G., Fisher, C.U., Mitchell, J., Delaney, N., et al. (2004) Alterations in Lipid Raft Composition and Dynamics Contribute to Abnormal T Cell Responses in Systemic Lupus Erythematosus. The Journal of Immunology, 172, 7821-7831.
https://doi.org/10.4049/jimmunol.172.12.7821
[62] Abadía-Molina, A.C., Ji, H., Faubion, W.A., Julien, A., Latchman, Y., Yagita, H., et al. (2006) CD48 Controls T-Cell and Antigen-Presenting Cell Functions in Experimental Colitis. Gastroenterology, 130, 424-434.
https://doi.org/10.1053/j.gastro.2005.12.009
[63] Luan, H.H., Wang, A., Hilliard, B.K., Carvalho, F., Rosen, C.E., Ahasic, A.M., et al. (2019) GDF15 Is an Inflammation-Induced Central Mediator of Tissue Tolerance. Cell, 178, 1231-1244. E11.
https://doi.org/10.1016/j.cell.2019.07.033
[64] Uhlen, M., Zhang, C., Lee, S., Sjöstedt, E., Fagerberg, L., Bidkhori, G., et al. (2017) A Pathology Atlas of the Human Cancer Transcriptome. Science, 357, eaan2507.
https://doi.org/10.1126/science.aan2507
[65] Wang, Z., He, L., Li, W., Xu, C., Zhang, J., Wang, D., et al. (2021) GDF15 Induces Immunosuppression via CD48 on Regulatory T Cells in Hepatocellular Carcinoma. The Journal for ImmunoTherapy of Cancer, 9, e002787.
https://doi.org/10.1136/jitc-2021-002787
[66] Nishikawa, A., Suzuki, K., Kassai, Y., Gotou, Y., Takiguchi, M., Miyazaki, T., et al. (2016) Identification of Definitive Serum Biomarkers Associated with Disease Activity in Primary Sjögren’s Syndrome. Arthritis Research & Therapy, 18, Article 106.
https://doi.org/10.1186/s13075-016-1006-1