温度调控WSe2/WS2异质结层间激子动力学行为研究
Temperature-Modulated Study of the Dynamical Behavior of Excitons in the Interlayer of WSe2/WS2 Heterostructures
DOI: 10.12677/ms.2024.145063, PDF, HTML, XML, 下载: 36  浏览: 65 
作者: 陈世洪, 赵小莲:广西大学资源环境与材料学院,广西 南宁
关键词: WSe2/WS2异质结层间激子光致发光WSe2/WS2 Heterostructures Interlayer Exciton Photoluminescence
摘要: 二维材料异质结中的激子包括面内激子、层间激子等,其中,层间激子为玻色子,其凝聚温度由浓度及有效质量决定,因此其长寿命的优点有助于实现高温下的激子凝聚,从而减小电子耗散速率,使得层间激子成为设计低能耗、高效能的微纳电子器件的重要载体。但层间激子较弱的发光效率进一步加深了其探测难度。研究发现,层间激子对温度具有极高的敏感性,因此,基于光致发光光谱,研究了温度对0˚层间扭转角WSe2/WS2异质结中层间激子的影响。发现随温度升高,WSe2/WS2异质结中层间激子的发光强度降低,当温度升高至145 K时,WSe2/WS2异质结的层间激子完全淬灭,并从层间激子复合动力学角度,揭示了温度调控层间激子动力学的机理。
Abstract: The excitons in the heterojunction of two-dimensional materials include in-plane excitons, interlayer excitons, etc. Among them, the interlayer excitons are bosons, whose coalescence temperature is determined by the concentration and the effective mass, and thus their long-lived advantages help to achieve exciton coalescence at high temperatures and thus reduce the electron dissipation rate, which makes the interlayer excitons become an important carrier for the design of micro- and nano-electronic devices with low energy consumption and high efficiency. However, the weak luminescence efficiency of interlayer excitons further deepens the difficulty of their detection. It was found that the interlayer excitons are extremely sensitive to temperature, so the effect of temperature on the interlayer excitons in WSe2/WS2 heterostructures with 0˚ interlayer twist angle was investigated based on photoluminescence spectroscopy. It is found that the luminescence intensity of the interlayer excitons in the WSe2/WS2 heterostructures decreases with increasing temperature, and the interlayer excitons in the WSe2/WS2 heterostructures are completely quenched when the temperature is increased to 145 K. The mechanism of temperature-regulated interlayer exciton dynamics is also revealed from the viewpoint of interlayer exciton complex dynamics.
文章引用:陈世洪, 赵小莲. 温度调控WSe2/WS2异质结层间激子动力学行为研究[J]. 材料科学, 2024, 14(5): 564-570. https://doi.org/10.12677/ms.2024.145063

1. 引言

由于弱的层间范德华力以及强的平面内共价键,使得二维过度金属硫化物(Transition Metal Dichalcogenides, TMDs)材料容易从块体被剥离至原子级薄层(空间范围被限制在Z方向) [1] [2] 。此时材料中的电输运等性质得到极大提升,故其被认为是下一代光电器件的候选材料。范德瓦尔斯异质结由此类二维材料组成,并成为探索新奇量子现象理想载体 [3] [4] 。通过垂直排列二维材料,此时电子和空穴分别位于不同的TMDs层,可以形成空间间接激子,其激子寿命长于面内激子 [5] [6] [7] [8] 。

研究人员对层间激子已有一定研究。例如,Junho Choi等 [9] 对不同层间转角的异质结进行了变温实验,发现层间激子在低温下的热分布被抑制,因此均位于辐射窗口内;随温度增加,激子获得足够动能从辐射窗口逃逸,此时激子寿命增加。可见层间激子对温度具有高度敏感性。Dameng Liu等 [10] 人基于超快飞秒瞬态吸收系统成像了温度依赖的层间激子扩散超快过程,观察到随温度升高,异质结中激子发生从经典激子气到激子凝聚的量子相变,并发现在临界转变温度30 K以下,莫尔势抑制激子扩散,维持较高的激子浓度,从而提高临界温度,然而,莫尔势的增大也会指数级增加激子有效质量,从而降低激子凝聚临界温度。此外,基于漂移–扩散方程,模拟验证了温度对激子在实空间的扩散过程具有直接调控作用。然而,层间激子虽然具有较长的激子寿命,但其发光强度较弱,使得在室温下难以探测。但温度对层间激子发光强度的研究的还少有报道,限制了层间激子的实际应用。

在本项工作中,制备了层间转角为0度的WSe2/WS2异质结,并基于光致发光光谱,研究了90 K至145 K温度对下层间激子发光强度的影响机理,发现随温度增加,层间激子具有发光强度逐渐减弱,当温度升高至145 K时,已无层间激子发光峰出现,说明此时层间激子为暗激子。该项研究从温度调控层间激子发光强度出发,研究了温度对WSe2/WS2异质结中层间激子影响规律,揭示了温度调控层间激子复合的动力学机理。

2. 温度调控WSe2/WS2层间激子发光强度机理研究

2.1. 转角WSe2/WS2异质结的制备与层间转角表征

为了揭示温度对二维材料异质结中层间激子的调控机理,基于机械剥离法及“pick-up”干法转移,制备了hBN/WSe2/WS2/hBN异质结构。在样品制备阶段,首先从块状晶体中机械剥离出单层WSe2和WS2。随后,在SiO2/Si基底上组装WSe2/WS2异质结构。为了保证异质结不被空气中的杂质污染,每个异质结构的顶部和底部都覆盖了少层六方氮化硼(hBN)。理论计算发现,当WSe2/WS2异质结构层间转角为0 时其能带结构简单,因此为简化分析,变温实验在0˚的hBN/WSe2/WS2/hBN异质结构上进行,二维异质结样品的光学图像如图1(a)所示,在WSe2和WS2单层重叠的区域内形成了WSe2/WS2异质结构。为确定WSe2/WS2间转角,分别对单层WSe2、WS2以及WSe2/WS2异质结区域进行了二次谐波测试,显示WSe2/WS2间转角为0˚,如图1(b)所示。

Figure 1. Schematic diagrams of WSe2/WS2 heterostructure: (a) Optical microscope images of WSe2 monolayer, WS2 monolayer, and WSe2/WS2 heterostructure on SiO2/Si substrates; (b) Monolayer WSe2 (black line), monolayer WS2 (red line), and heterostructure region (blue) in the WSe2/WS2heterostructures

图1. WSe2/WS2异质结构示意图:(a) SiO2/Si基底上的WSe2单层、WS2单层和WSe2/WS2异质结构的光学显微镜图像;(b) WSe2/WS2异质结中单层WSe2(黑线)、单层WS2(红线)及异质结区域(蓝色)

为了表征WSe2/WS2异质结的具有强的层间耦合,进行了稳态拉曼分析。在WSe2/WS2区域,观察到了WSe2和WS2单层的特征峰。图2(a)显示了WS2单层的面外A1g和层内 E 2 g 1 模式(分别为418.51 cm−1和351.35 cm−1),以及WSe2单层的面外A1g和层内 E 2 g 1 模式(分别为251.21 cm−1和261.35 cm−1)的特征拉曼峰。通过评估WS2的A1g模式强度,发现与WS2相比,WSe2/WS2异质结的A1g强度明显增加,这表明所制备的异质结构具有很强的层间耦合 [11] [12] [13] 。

二维材料异质结在小角度下由于晶格失配,会产生周期性莫尔超晶格 [14] [15] 。莫尔超晶格带来的另一个影响与层间激子的光学活性有关。层间转角使激子在动量空间中具有有限动量Qm = Kc − Kv [16] ,这是由于两个单层二维材料的布里渊区的相对旋转引起的。当层间转角为0˚或60˚时,激子中电子和空穴的动量失配最小,导致层间激子能够复合发光。进一步,利用原子力显微镜表征了WSe2/WS2异质结构不同层之间的转角大小。从图2(b)中可以清楚地看到层间扭转角产生了莫尔超晶格结构。由于WSe2/WS2异质结构单层之间的晶格失配约为4%,当层间转角为0˚时,莫尔超晶格的周期约为8 nm [2] [17] [18] 。根据上述实验及表征,表明制备的hBN/WSe2/WS22/hBN异质结构具有高质量和精确的层间转角。

(a) (b)

Figure 2. Raman spectra and Moiré superlattice structure of WSe2/WS2 heterostructure: (a) Raman spectra of monolayer WS2, monolayer WSe2, and WSe2/WS2; (b) Periodic Moiré superlattice at the surface of WSe2/WS2 heterostructure

图2. WSe2/WS2异质结构的拉曼光谱及莫尔超晶格结构:(a) 单层WS2、单层WSe2及WSe2/WS2的拉曼光谱;(b) WSe2/WS2异质结表面周期性莫尔超晶格

相比于单层WSe2、WS2的面内激子,WSe2/WS2异质结的层间激子具有较长的激子寿命。通过外界调控,相对于面内激子,其激子寿命可提高约1~2个数量级,有望成为实现低能耗、高效能的微纳电子器件的理想平台 [19] [20] 。图3显示了层间转角为0˚的WSe2/WS2异质结中WSe2、WS2的面内激子及WSe2/WS2区域的层间激子寿命对比。可以发现,层间激子相对于面内激子具有更慢的衰减速率,表明层间激子相对于面内激子具有更长的寿命。

Figure 3. Characterization of exciton lifetime in WSe2/WS2 heterostructure

图3. WSe2/WS2异质结中激子寿命表征

2.2. 温度调控层间激子(非)辐射复合过程

0˚层间转角的WSe2/WS2异质结中层间激子长寿命的特性来源于其能带结构,因此,为了揭示层间激子长寿命机理,需要先了解层间激子中电子、空穴在能带中的跃迁机理。当温度较低时,激子热涨落被抑制,此时不同激子间耦合减弱,便于实现对层间激子、面内激子多过程的解耦,以研究单一激子过程,因此,研究了温度范围为90 K至150 K下层间激子辐射复合发光过程的能量变化,并通过光致发光(Photoluminescence, PL)光谱表征层间激子强度变化情况。对于WSe2/WS2异质结中的层间激子,其的PL峰位约为1.43 eV。图4显示了在WSe2/WS2异质结构的单层和双层区域测量到的归一化后的光致发光光谱对比,图中黑色垂直线为层间激子的光致发光发射峰。从图4可以看出,当实验温度为90 K时,层间激子的PL最强,意味此时辐射出的光子数最多,随温度升高,层间激子的PL强度逐渐减弱,当温度升高至145 K时,从PL光谱上已经无法看出峰值出现,可见,当温度达到145 K时,层间转角为0˚的WSe2/WS2异质结的层间激子已经完全淬灭,说明此时层间激子为暗激子。从动量空间角度观察,激子在低温下的热分布被抑制,导致激子缺乏足够的动能进行跃迁,因此均位于辐射窗口内,故此时PL强度最高;随温度增加,激子获得足够动能从辐射窗口逃逸。电子热涨落增强,更多激子具备足够动能跃出光锥范围,导致量子产率下降,表现出层间激子发生淬灭。

Figure 4. PL results of WSe2/WS2 interlayer excitons at different temperatures (The picture on the right is a partial enlargement)

图4. 不同温度下WSe2/WS2层间激子的PL结果(右图为局部放大图)

2.3. 机理解释

对于0˚转角度的WSe2/WS2异质结,由于WS2的价带能量低于WSe2价带,WS2导带能量低于WSe2的导带,而电子倾向于集中在能量较低的能级中,空穴倾向于集中在能量较高的能级中,导致电子集中在WS2的导带低,空穴集中在WSe2的价带顶,因此层间激子的跃迁复合分为两个部分:(1) 位于WSe2导带底的电子通过非辐射过程跃迁至WS2导带,此过程不产生光子;(2) 位于WS2的电子通过辐射过程与WS2价带中的空穴复合并产生一个光子。图4显示了层间转角为0˚的WSe2/WS2异质结的层间激子强度随温度的变化情况。可以看出,当温度为90 K,层间激子的PL峰最强。这是因为激子在低温下的热分布被抑制,WSe2/WS2异质结中电子无法获得足够动量发生跃迁,导致电子聚集在导带底(均位于辐射窗口内),此时电子–空穴空间距离最小,波函数重叠增加,电子–空穴间辐射复合概率增加,辐射光子数量最多,故从PL光谱则表现出激子峰强度最强 [21] 。随温度继续增加,热涨落增加,激子获得足够动能从辐射窗口逃逸,WSe2/WS2异质结中电子受热涨落影响,获得足够动量后跃迁至更高能级,此时电子–空穴空间距离逐渐增加,波函数重叠逐渐减小,电子–空穴辐射复合概率逐渐降低,辐射光子数逐渐减少,从PL光谱表现出激子峰能量随温度升高而降低,直至145 K时PL完全淬灭。

3. 总结

温度对二维TMDs异质结中层间激子具有重要的调制作用,通过研究温度对层间激子影响规律,揭示了温度调控层间激子(非)辐射复合机理。发现在0˚层间转角的WSe2/WS2异质结中,当温度为90 K,激子的热分布被抑制,电子无法获得足够动量发生跃迁,此时电子–空穴的波函数重叠增加,电子–空穴间辐射复合概率增加,辐射光子数量最多。随温度继续增加,热分布强度增加,激子获得足够动能从辐射窗口逃逸,此时电子–空穴波函数重叠逐渐减小,电子–空穴辐射复合概率逐渐降低,辐射光子数逐渐减少,从PL光谱表现出激子峰能量随温度升高而降低,直至145 K时PL完全淬灭。

参考文献

[1] Roy, S., Yang, X. and Gao, J. (2024) Biaxial Strain Tuned Upconversion Photoluminescence of Monolayer WS2. Scientific Reports, 14, Article No. 3860.
https://doi.org/10.1038/s41598-024-54185-8
[2] Miao, S., Wang, T., Huang, X., et al. (2021) Strong Interaction between Interlayer Excitons and Correlated Electrons in WSe2/WS2 Moiré Superlattice. Nature Communications, 12, Article No. 3608.
https://doi.org/10.1038/s41467-021-23732-6
[3] Meng, Y., Wang, T., Jin, C., et al. (2020) Electrical Switching between Exciton Dissociation to Exciton Funneling in MoSe2/WS2 Heterostructure. Nature Communications, 11, Article No. 2640.
https://doi.org/10.1038/s41467-020-16419-x
[4] Zhang, L., Zhang, Z., Wu, F., et al. (2020) Twist-Angle Dependence of Moiré Excitons in WS2/MoSe2 Heterobilayers. Nature Communications, 11, Article No. 5888.
https://doi.org/10.1038/s41467-020-19466-6
[5] Patel, H., Huang, L., Kim, C.J., et al. (2019) Stacking Angle-Tunable Photoluminescence from Interlayer Exciton States in Twisted Bilayer Graphene. Nature Communications, 10, Article No. 1445.
https://doi.org/10.1038/s41467-019-09097-x
[6] Policht, V.R., Mittenzwey, H., Dogadov, O., et al. (2023) Time-Domain Observation of Interlayer Exciton Formation and Thermalization in a MoSe2/WSe2 Heterostructure. Nature Communications, 14, Article No. 7273.
https://doi.org/10.1038/s41467-023-42915-x
[7] Zhang, Z., Regan, E.C., Wang, D., et al. (2022) Correlated Interlayer Exciton Insulator in Heterostructures of Monolayer WSe2 and Moiré WS2/WSe2. Nature Physics, 18, 1214-1220.
https://doi.org/10.1038/s41567-022-01702-z
[8] Azhikodan, D., Nautiyal, T., Shallcross, S., et al. (2016) An Anomalous Interlayer Exciton in MoS2. Scientific Reports, 6, Article No. 37075.
https://doi.org/10.1038/srep37075
[9] Choi, J., Florian, M., Steinhoff, A., et al. (2021) Twist Angle-Dependent Interlayer Exciton Lifetimes in Van Der Waals Heterostructures. Physical Review Letters, 126, 14-21.
https://doi.org/10.1103/PhysRevLett.126.047401
[10] Liu, H., Wang, J., Chen, S., et al. (2023) Direct Visualization of Dark Interlayer Exciton Transport in Moiré Superlattices. Nano Letters, 24, 339-346.
https://doi.org/10.1021/acs.nanolett.3c04105
[11] Del Corro, E., Terrones, H., Elias, A., et al. (2014) Excited Excitonic States in 1L, 2L, 3L, and Bulk WSe2 Observed by Resonant Raman Spectroscopy. ACS Nano, 8, 9629-9635.
https://doi.org/10.1021/nn504088g
[12] Paradisanos, I., Wang, G., Alexeev, E.M., et al. (2021) Efficient Phonon Cascades in WSe2 Monolayers. Nature Communications, 12, Article No. 538.
https://doi.org/10.1038/s41467-020-20244-7
[13] Berkdemir, A., Gutiérrez, H., Botello-Méndez, A., et al. (2013) Identification of Individual and Few Layers of WS2 Using Raman Spectroscopy. Scientific Reports, 3, Article No. 1755.
https://doi.org/10.1038/srep01755
[14] Yang, K., Xu, Z., Feng, Y., et al. (2024) Topological Minibands and Interaction Driven Quantum Anomalous Hall State in Topological Insulator Based Moiré Heterostructures. Nature Communications, 15, Article No. 2670.
https://doi.org/10.1038/s41467-024-46717-7
[15] Jat, M.K., Tiwari, P., Bajaj, R., et al. (2024) Higher Order Gaps in the Renormalized Band Structure of Doubly Aligned hBN/Bilayer Graphene Moiré Superlattice. Nature Communications, 15, Article No. 2335.
https://doi.org/10.1038/s41467-024-46672-3
[16] Alexeev, E.M., Ruiz-Tijerina, D.A., Danovich, M., et al. (2019) Resonantly Hybridized Excitons in Moiré Superlattices in van der Waals Heterostructures. Nature, 567, 81-86.
https://doi.org/10.1038/s41586-019-0986-9
[17] Tang, Y., Li, L., Li, T., et al. (2020) Simulation of Hubbard Model Physics in WSe2/WS2 Moiré Superlattices. Nature, 579, 353-358.
https://doi.org/10.1038/s41586-020-2085-3
[18] Jin, C., Regan, E.C., Yan, A., et al. (2019) Observation of Moiré Excitons in WSe2/WS2 Heterostructure Superlattices. Nature, 567, 76-80.
https://doi.org/10.1038/s41586-019-0976-y
[19] Jin, C., Tao, Z., Li, T., et al. (2021) Stripe Phases in WSe2/WS2 Moiré Superlattices. Nature Materials, 20, 940-944.
https://doi.org/10.1038/s41563-021-00959-8
[20] Lorchat, E., López, L.E.P., Robert, C., et al. (2020) Filtering the Photoluminescence Spectra of Atomically Thin Semiconductors with Graphene. Nature Nanotechnology, 15, 283-288.
https://doi.org/10.1038/s41565-020-0644-2
[21] Sharma, A., Zhu, Y., Halbich, R., et al. (2022) Engineering the Dynamics and Transport of Excitons, Trions, and Biexcitons in Monolayer WS2. ACS Applied Materials & Interfaces, 14, 41165-41177.
https://doi.org/10.1021/acsami.2c08199