#### 期刊菜单

Study on the Influence of Scanning Speed on the Removal of Polyethylene Films with Different Colors by 1 μm Continuous Laser
DOI: 10.12677/mp.2024.143011, PDF, HTML, XML, 下载: 78  浏览: 123

Abstract: Based on the theory of heat conduction and the scanning speed, a three-dimensional physical model of 1 μm continuous laser scanning to remove polyethylene film was established. The numerical simulation and experimental study of 1 μm continuous laser scanning to remove polyethylene film were carried out, and the temperature distribution and ablation morphology of polyethylene film were obtained. The removal rate interval of polyethylene film and the corresponding removal rate were analyzed, and the optimal removal parameters of polyethylene films with different colors were further obtained. The results show that when the laser power density is constant, the laser scanning speed has a significant effect on the removal rate of the polyethylene film. As the scanning speed increases, the removal rate of the polyethylene film gradually increases. Respectively, under the condition that no open flame is generated during the scanning process, the optimal removal speeds of blue, pink, purple, green, yellow and red polyethylene films at laser power density of 800 W/cm2 are 6.8 mm/s, 3.9 mm/s, 1.4 mm/s, 1.3 mm/s, 0.3 mm/s and 0.3 mm/s.

1. 引言

2. 理论

2.1. 物理模型

$k\left(T\right)\left(\frac{{\partial }^{2}T}{\partial {x}^{2}}+\frac{{\partial }^{2}T}{\partial {y}^{2}}\right)+Q\left(x,y,t\right)=\rho \left(T\right)C\left(T\right)\frac{\partial T}{\partial t}$ (1)

$\text{d}s=\text{d}x\cdot \text{d}y$ (2)

$\text{d}P=\text{d}s\frac{2\alpha P}{\pi {r}^{2}}\mathrm{exp}\left(-\frac{2\left({x}^{2}+{y}^{2}\right)}{{r}^{2}}\right)$ (3)

$\text{d}t=\frac{\text{d}x}{V}$ (4)

${E}_{1}={\int }_{-\infty }^{+\infty }\frac{2\alpha P}{\pi {r}^{2}}\mathrm{exp}\left(-\frac{2\left({x}^{2}+{y}^{2}\right)}{{r}^{2}}\right)\text{d}s\frac{\text{d}x}{V}$ (5)

${E}_{2}=\rho CD\Delta T\text{d}s$ (6)

${E}_{1}={E}_{2}$ (7)

$D=\frac{\frac{2\alpha P}{V\pi {r}^{2}}{\int }_{-\infty }^{+\infty }\mathrm{exp}\left(-\frac{2\left({x}^{2}+{y}^{2}\right)}{{r}^{2}}\right)\text{d}x}{\rho C\Delta T}$ (8)

$D=\frac{\sqrt{2}\alpha }{\rho C\Delta Tr\sqrt{\pi }}\left(\frac{P}{V}\right)$ (9)

$Q\left(x,y\right)=\frac{2\alpha P}{\pi {r}^{2}}\mathrm{exp}\left(-\frac{2\left({x}^{2}+{y}^{2}\right)}{{r}^{2}}\right)$ (10)

2.2. 仿真模型

Figure 1. Simulation model

Table 1. Basic physical parameters of polyethylene film

1) 1 μm连续激光垂直扫描材料过程中，材料吸收系数不变；

2) 扫描过程中聚乙烯薄膜的比热容、热传导系数和激光吸收系数不受温度变化的影响；

3) 扫描过程中不产生内热源；

$\left\{\begin{array}{l}{q}_{r}=h\cdot \left({T}_{ext}-T\right)\\ {q}_{b}=\epsilon \cdot \sigma \cdot \left({T}_{amb}^{4}-{T}^{4}\right)\end{array}$ (11)

$\eta =\frac{L}{t}$ (12)

2.3. 清除速度临界值设定

2.4. 当激光功率密度为800 W/cm2时聚乙烯薄膜的仿真结果及现象分析

Figure 2. Temperature evolution and ablation morphology of polyethylene films at laser power density of 800 W/cm2

Figure 3. Removal efficiency of polyethylene films at different scanning speeds

2.5. 不同颜色聚乙烯薄膜的最佳清除参数

Table 2. Speed thresholds and removal rates of polyethylene films of different colors at laser power density of 800 W/cm2

3. 实验

3.1. 实验设计

Figure 4. Schematic diagram of the experimental apparatus

Table 3. Main parameters

3.2. 当激光功率密度为800 W/cm2时聚乙烯薄膜的实验结果及现象分析

Figure 5. Temperature evolution and ablation morphology of polyethylene films at laser power density of 800 W/cm2

Figure 6. Removal efficiency of polyethylene film

3.3. 不同颜色聚乙烯薄膜的最佳清除参数

Table 4. Speed thresholds and removal rates of polyethylene films of different colors at laser power density of 800 W/cm2

4. 结论

1) 1 μm连续激光辐照后，聚乙烯吸收激光能量发生热效应，导致局部熔化或气化。当功率密度一定时，聚乙烯薄膜的清除速率随着扫描速度的增加而逐渐增加。

2) 在保证扫描过程中不产生明火的条件下，激光功率密度为800 W/cm2时蓝色、粉色、紫色、绿色、黄色和红色聚乙烯薄膜的最佳清除速度分别为6.8 mm/s、3.9 mm/s、1.4 mm/s、1.3 mm/s、0.3 mm/s、0.3 mm/s。

NOTES

*通讯作者。

 [1] Sawada, J., Kusumoto, K., Maikawa, Y., Munakata, T. and Ishikawa, Y. (1991) A Mobile Robot for Inspection of Power Transmission Lines. IEEE Transactions on Power Delivery, 6, 309-315. https://doi.org/10.1109/61.103753 [2] Liang, Y.H. and Yang, F. (2019) Development and Application of Foreign Objects Removal Device for High Voltage Transmission Line. IOP Conference Series: Materials Science and Engineering, 631, Article 042023.https://doi.org/10.1088/1757-899X/631/4/042023 [3] Zhang, Y.D., Li, J.B., Li, C., et al. (2019) Development of Foreign Matter Removal Robot for Overhead Transmission Lines. Journal of Physics: Conference Series, 1303, Article 012021. https://doi.org/10.1088/1742-6596/1303/1/012021 [4] Moraczewski, K., Mróz, W., Budner, B., et al. (2016) Laser Modification of Polylactide Surface Layer Prior Autocatalytic Metallization. Surface and Coatings Technology, 304, 68-75. https://doi.org/10.1016/j.surfcoat.2016.06.085 [5] Zhang, H.B., Yuan, Z.J., Ye, R., et al. (2017) Filamentation-Induced Bulk Modification in Fused Silica by Excimer Laser. Optical Materials Express, 7, 3680-3690. https://doi.org/10.1364/OME.7.003680 [6] Cutroneo, M., Torrisi, L., Havranek, V., et al. (2019) Localized Modification of Graphene Oxide Properties by Laser Irradiation in Vacuum. Vacuum, 165, 134-138. https://doi.org/10.1016/j.vacuum.2019.04.012 [7] Wang, X.Y., Yu, X.M., Shi, H.Y., et al. (2019) Characterization and Control of Laser Induced Modification inside Silicon. Journal of Laser Applications, 31, Article 022601. https://doi.org/10.2351/1.5096086 [8] Pereira, H., Carvalho, O., Miranda, G., et al. (2020) Pure Magnesium Laser Surface Modification Using Nd:YAG Laser. Materials Technology, 36, 811-815. https://doi.org/10.1080/10667857.2020.1797326 [9] Pu, Z.H., Jing, X.B., Yang, C.J., et al. (2020) Wettability Modification of Zirconia by Laser Surface Texturing and Silanization. International Journal of Applied Ceramic Technology, 17, 2182-2192. https://doi.org/10.1111/ijac.13579 [10] Torkamany, M.J., Malek Ghaini, F., Poursalehi, R., et al. (2016) Combination of Laser Keyhole and Conduction Welding: Dissimilar Laser Welding of Niobium and Ti-6Al-4V. Optics and Lasers in Engineering, 79, 9-15.https://doi.org/10.1016/j.optlaseng.2015.11.001 [11] Lakemeyer, P., Schoeppner, V., Bates, P., et al. (2017) Matching of Laser Intensity Distribution for Laser Transmission Welding of Thermoplastics. Welding in the World, 61, 1247-1252. https://doi.org/10.1007/s40194-017-0501-6 [12] Li, S.C., Xu, W., Xiao, G., et al. (2018) Weld Formation in Laser Hot-Wire Welding of 7075 Aluminum Alloy. Metals, 8, Article 909. https://doi.org/10.3390/met8110909 [13] Kumar, C.D., Das, M., Paul, C.P., et al. (2019) Weld Quality Assessment in Fiber Laser Weldments of Ti-6Al-4V Alloy. Journal of Materials Engineering and Performance, 28, 3048-3062. https://doi.org/10.1007/s11665-019-04073-4 [14] Zhang, S.W., Sun, J.H., Zhu, M.H., et al. (2020) Fiber Laser Welding of HSLA Steel by Autogenous Laser Welding and Autogenous Laser Welding with Cold Wire Methods. Journal of Materials Processing Technology, 275, Article 116353. https://doi.org/10.1016/j.jmatprotec.2019.116353 [15] Zhang, J.Q., Huang, T., Mironov, S., et al. (2021) Laser Pressure Welding of Copper. Optics & Laser Technology, 134, Article 106645. https://doi.org/10.1016/j.optlastec.2020.106645 [16] Torrisi, L., Gammino, S., Mezzasalma, A.M., et al. (2004) Laser Ablation of UHMWPE-Polyethylene by 438 Nm High Energy Pulsed Laser. Applied Surface Science, 227, 164-174. https://doi.org/10.1016/j.apsusc.2003.11.078 [17] Lee, A.J., Dawes, J.M. and Withford, M.J. (2008) Investigation of Femtosecond Laser Induced Thermal Ablation of Polyethylene. Journal of Laser Applications, 20, 154-159. https://doi.org/10.2351/1.2955561 [18] Okoshi, M. and Inoue, N. (2003) Femtosecond Laser Ablation of Polyethylene. Japanese Journal of Applied Physics, 42, L36-L38. https://doi.org/10.1143/JJAP.42.L36 [19] Xu, J., Rong, Y.M., Liu, W.N., et al. (2021) Temperature Field-Assisted Ultraviolet Nanosecond Pulse Laser Processing of Polyethylene Terephthalate (PET) Film. Micromachines, 12, Article 1356. https://doi.org/10.3390/mi12111356