肝窦内皮细胞在NAFLD疾病中的作用
The Role of Liver Sinusoidal Endothelial Cells in NAFLD Disease
摘要: 非酒精性脂肪性肝病(Non-alcoholic fatty liver disease, NAFLD)是一种发病率较高的常见慢性肝病,其发病机制较为复杂,为药物研发带来困难。肝窦内皮细胞(liver sinusoidal endothelial cells, LSECs)位于肝血窦表面,是肝脏与血液接触的第一道防线,也是肝脏中含量最多的非实质细胞。LSECs作为肝脏内高度特化的内皮细胞,由于其独特的结构以及功能在NAFLD的发生与进展中都扮演了重要的角色,并且可以为NAFLD药物研发带来新思路。本文主要针对LSECs及其功能障碍在NAFLD中参与到的发病机制进行综述,并对以改善LSECs功能障碍为靶点的药物进行介绍。
Abstract: Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease with a high incidence rate, and its pathogenesis is complex, posing challenges for drug development. Liver sinusoidal endothelial cells (LSECs) are located on the surface of the liver sinusoids, serving as the first line of defense between the liver and blood, and they are the most abundant non-parenchymal cells in the liver. LSECs, as highly specialized endothelial cells in the liver, play an important role in the occurrence and progression of NAFLD due to their unique structure and function, offering new insights for NAFLD drug development. This review focuses on the involvement of LSECs and their functional impairments in the pathogenesis of NAFLD, and introduces drugs that target improving LSECs dysfunction.
文章引用:黄玥勤, 刘秋言, 岳芸芸, 尚靖. 肝窦内皮细胞在NAFLD疾病中的作用[J]. 药物资讯, 2024, 13(3): 204-214. https://doi.org/10.12677/pi.2024.133025

1. 引言

非酒精性脂肪肝病(Non-alcoholic fatty liver disease, NAFLD)是世界上最常见的肝脏疾病之一,指在没有异常酒精摄入或某些遗传条件下,以肝细胞脂肪变性超过5%为主要病理特征的一种代谢性疾病,它与肥胖、2型糖尿病(diabetes mellitus type 2, T2DM)和其他代谢综合征特征密切相关 [1] 。随着脂质蓄积和炎症的加重,NAFLD可能发展为非酒精性脂肪性(Non-alcoholic steatohepatitis, NASH),而NASH则可能导致肝纤维化、肝硬化甚至肝癌,并使心血管风险增加 [2] 。2020年2月,国际脂肪肝命名小组提议将非酒精性脂肪肝病更名为代谢相关脂肪性肝病(Metabolic associated fatty liver disease, MAFLD),对理解NAFLD的发病机制迈出了重大一步,更加突出了NAFLD疾病的复杂性和其他代谢综合征的密切关系 [3] 。Riazi等人的meta分析显示,2022年的NAFLD全球发病率为32.4%,并且这一比例还在持续增加 [4] 。但目前美国食品和药物管理局(FDA)仅有一款甲状腺素受体(THR)-β激动剂被批准用于治疗NAFLD的药物,说明NAFLD的药物研发任重而道远。

肝脏是人体内关键的代谢器官,而肝脏内的血管网络提供了营养物质和氧气,同时清除废物和毒素,维持肝脏正常的新陈代谢功能,对于维持肝脏健康至关重要 [5] 。并且有许多研究都表明,肝内血管病变在NAFLD的发生与发展过程中扮演重要角色 [6] 。血管内皮细胞是血液和身体其他组织之间的界面,不仅是一种物理屏障,而且参与不同的生理作用,如止血、代谢产物运输、炎症、血栓形成、血管生成和血管紧张性 [7] 。由于优越的位置,并且与血流的密切接触,内皮细胞是面对邻近细胞或远处部位产生的各种循环刺激的第一道防线 [8] 。肝脏内的血管内皮细胞主要由肝窦内皮细胞(liver sinusoidal endothelial cell, LSECs)构成。LSECs是肝脏内高度特化的内皮细胞,其最大的特点是没有基底膜并且细胞表面存在窗孔,窗孔直径约为50~200 nm,调节包括脂和脂蛋白在内的大分子的跨窦运输 [9] 。LSECs位于肝星状细胞与肝细胞交界处,调控肝脏微环境,是肝脏的第一防御屏障,参与调节肝细胞对各种损伤的应答 [9] 。越来越多的研究都表明,LSECs功能障碍发生在NAFLD的早期阶段,并且在NAFLD进展过程中一直存在且发挥重要作用。因此,本文综述了肝窦内皮细胞在正常下的生理功能、LSECs功能障碍在NAFLD发病机制中的作用,以及已LSECs为治疗靶点的NAFLD在研药物,为NAFLD药物研发提供支持。

2. 肝脏内皮细胞与NAFLD的关系

2.1. 内皮细胞在正常肝脏中的作用

肝脏中的内皮细胞是一种重要的非实质细胞类型,主要由肝窦内皮细胞构成,存在于肝脏的血管壁上。它们具有多种功能,包括调节血管张力、维持血液凝固平衡、参与免疫反应和促进血管生成等。

LSECs最大的特点就是存在开放的窗孔,没有基底膜,形成可渗透的屏障。1970年,Eddie Wisse首次用透射电镜观察肝窦内皮细胞的窗孔,证实大鼠肝窦内皮细胞的窗孔呈簇状或筛板状排列 [10] 。LSECs窗口的维持需要旁分泌和自分泌细胞信号 [11] 。由肝细胞和星状细胞分泌的血管内皮生长因子(VEGF),在LSECs的窗孔维持中发挥重要作用,并通过一氧化氮(Nitric Oxide, NO)依赖和非NO依赖的途径发挥作用 [12] [13] 。LSECs的窗孔结构使得肝细胞与血液之间能够直接交流,并从血液中获得氧气、微量营养素和大量营养素。循环中存在的膳食脂肪必须通过血管内皮细胞运输,才能被组织代谢。在生理条件下,LSECs是血液和肝实质之间双向物质交换的主要调节细胞。首先,肝窦内皮细胞的窗孔允许脂蛋白、乳糜粒残留物(来自饮食脂质的肠细胞产生的乳糜粒的小脂蛋白和其他大分子从肝窦血液有效地转移到Disse间隙,之后被肝细胞摄取 [14] 。LSECs的窗孔可以形成脂质的选择性屏障。有研究发现,使用放射性元素标记脂蛋白后,较大的脂蛋白不能穿过LSEC窗口,而留在窦腔内,此外,当LSECs在VEGF通路中断后,会导致LSECs窗孔消失并对荧光标记脂质的摄取受损 [12] [13] 。

LSECs还会分泌参与调节血管张力和分泌具有血管活性的分子,如NO。正常情况下,LSECs在肝窦剪切应力下分泌NO,以自分泌方式调节血流并维持其分化表型 [15] 。健康分化的LSECs通过内皮型一氧化氮酶(eNOS)依赖的NO途径维持Kupffer细胞和肝星状细胞(Hepatic Stellate Cell, HSCs)处于静止状态 [16] 。

在免疫方面,LSECs还作为抗原提呈细胞,通过释放细胞因子和激活免疫细胞信号通路来调节免疫动态平衡 [17] 。与传统的抗原呈递细胞相比,LSECs的激活具有细胞特异性反应的限制,从而有助于器官对抗原的特异性反应和肝脏的耐受性环境 [18] 。此外,与普通内皮细胞相比,LSECs另一个独特的特征是高表达多种清道夫受体,如甘露糖受体(MR)、清道夫受体(SR)和Fcγ受体IIb2 (FcRIIb2),使其具有很强的内吞能力,因此LSEC可以积极参与清除到达肝窦的抗原,并有助于肝脏维持耐受状态 [19] 。除此之外,LSEC还介导氧化和乙酰化低密度脂蛋白、晚期糖基化终产物和废物(透明质酸、硫酸软骨素或前胶原N末端前肽(I、III))等物质的内吞作用 [20] 。

LSECs还可以通过不同的机制积极调节肝内凝血,包括直接产生促凝剂和抗凝血因子,募集和激活中性粒细胞以及与血小板的相互作用 [21] [22] [23] 。

2.2. 内皮功能障碍与NAFLD的关系

越来越多的证据支持NAFLD与心血管疾病(CardiovascuIar Disease, CVD)风险增加之间存在强烈的相关性,并且除了肝纤维化/肝硬化的风险外,NAFLD患者的全因死亡率风险增加,特别是CVD [24] 。这种风险归因于NAFLD和CVD的共同易感因素,其中内皮功能障碍是一个关键因素 [25] 。血管内皮细胞对血管功能的平衡调节可以被许多损伤打破。作为对各种伤害性刺激的反应,内皮细胞经历了表型向非适应性状态的转变,称为内皮功能障碍,其特征是在健康内皮细胞中工作的内环境平衡机制的丧失或失调,主要表现为NO生物利用度降低、黏附分子表达增加、促炎和促血栓形成因子合成增加和血管张力调节异常等 [26] 。血管功能障碍可以发生在全身任何的血管中,越来越多的研究都开始注意到了肝脏中的内皮功能障碍,并且在包括NAFLD在内的肝脏疾病中发挥非常重要的作用。许多研究都表明,LSECs功能障碍是NAFLD肝脏病理发展的主要特征或早期事件。LSECs功能障碍可能通过多种机制参与NAFLD的进展,包括炎症过程的调节、肝星状细胞的激活、血管阻力的增加和微循环的扭曲,进而引起肝脏脂质摄取和代谢受损、大分子和代谢物运输紊乱、血管生成、肝内炎症、肝细胞损伤,最终导致NAFLD进展 [8] [27] [28] [29] 。LSECs是NAFLD整个过程中肝脏稳态、血流、内吞能力和炎症反应的关键调节因子 [30] 。同样,NAFLD的发生也会导致血管内皮功能障碍和动脉粥样硬化进展的风险增加,而与代谢综合征及其组成部分的发生无关 [31] 。

3. 内皮功能障碍在NAFLD发病机制中的作用

3.1. 内皮细胞对血流和微循环的影响

LSECs与其他组织的内皮细胞一样,负责血流调节 [32] 。多项研究表明,肝血流减少等肝脏微循环障碍可能在包括NAFLD在内的慢性肝脏疾病的发病和进展中发挥关键作用 [33] [34] [35] 。

有研究评估了Zucker大鼠脂肪变性肝脏微血管的改变情况,发现与对照组相比,微循环异常,主要表现为肝窦密度降低 [36] 。重度肝脂肪变性ob/ob小鼠的肝脏血流和LSECs功能评估显示,肝脏血流和窦血流灌注受损,肝缺血损伤后进一步恶化 [37] 。同样还有研究发现在NASH或单纯性脂肪变性小鼠的肝脏中观察到血流的实质性改变,具体表现为,肝脂质积累引起肝实质细胞增大,导致实质细胞板变宽,窦腔变窄 [38] 。另一项对饮食诱导的NAFLD大鼠的研究证实了这些发现,表明脂质积累引起的肝实质细胞肿大和肿胀导致窦血流灌注减少;这些改变导致窦状内皮细胞管腔扭曲和窦内体积减少,导致LSECs结构改变和组织灌注损伤 [39] 。

肝内血管阻力的增加有机械和动力两方面的原因。机械部分是由于增大的脂肪肝细胞对窦腔的压迫。动态部分是由于肝内皮功能障碍。肝内剪切应力被认为是肝脏血流调节的主要驱动因素 [40] 。在正常情况下,肝脏和其他血管床一样,内皮细通过产生血管活性物质,即NO和内皮素-1 (Endothelin 1, ET-1),以应对增加的剪切应力,减弱血压的升高。而当NAFLD发生后,内皮细胞的这种应对剪切应力的能力会丧失。多项证据表明,脂肪肝中出现LSECs功能障碍,并参与与脂肪变性相关的肝内血管阻力增加。高脂肪饮食或富含饱和脂肪酸饮食4周后,小鼠和大鼠的eNOS激活和肝脏一氧化氮含量降低,并且分离灌注肝脏实验显示,门静脉灌注压力增加,乙酰胆碱对血管的舒张反应降低,表明肝内皮功能障碍 [41] 。这些变化是在没有炎症和纤维化的情况下观察到的,这表明内皮功能障碍是nafld脂肪变性的早期特征。LSECs通过被称为kruppel样因子2 (kruppel-like foctor, KLF2)的内皮特异性转录因子调节NO和ET-1的表达。有研究发现,与对照组相比,喂食CafD (65%脂肪,大部分为饱和脂肪)的Wistar Kyoto大鼠的灌注肝脏中观察到门脉压(Protal venous Pressure, PP)升高,内皮依赖性血管舒张功能降低,同样还观察到CafD大鼠肝血管阻力增加与蛋白激酶B依赖性eNOS磷酸化和eNOS活性降低有关 [28] 。

LSECs释放的调节血流的其他分子包括血管舒张剂一氧化碳以及环加氧酶(cyclo-oxygenase, COX)途径的代谢物(血栓素A2、前列环素),并以旁分泌但形式作用于位于Disse间隙的肝星状细胞 [42] 。

综上,LSECs在感知和调节NAFLD中肝血管阻力以及最终肝微血管血流方面发挥着至关重要的作用。

3.2. NAFLD中肝窦内皮细胞的结构改变

LSECs在细胞表面独特的窗孔结构是其与其他内皮细胞相比最显著的特点。肝脂肪变性过程中LSECs形态和功能都会发生改变 [43] [44] [45] 。LSECs的毛细血管化发生在NAFLD的早期阶段,甚至在脂肪变性形成之前 [46] 。有研究显示,小鼠在给予胆碱缺乏l-氨基酸定义(CDAA)饮食1周后开始LSEC窗孔开始消失 [47] ,HFD大鼠在喂养三周后也出现了类似的现象 [43] 。

导致肝窦内皮细胞毛细血管化的因素尚未完全确定,但可以推测,过量的脂质可能是导致毛细血管化的主要因素。Cogger等人在小鼠实验中发现,不同的饮食中含有不同的大量营养素和能量,LSEC孔隙度和窗孔数量与饮食脂肪摄入量呈负相关,而窗孔直径与蛋白质或碳水化合物摄入量呈负相关 [43] 。在这项研究中,作者还发现LSECs的窗孔数量、孔隙度和直径与循环游离脂肪酸(free fatty acid, FFA)水平呈负相关 [43] 。体外研究表明,人的原代LSECs暴露于氧化低密度脂蛋白会导致窗孔的直径和孔隙度减少 [45] 。

而毛细血管化对脂肪变性的影响研究较少,目前只有两个相关的假设。第一个假设是LSEC通透性的降低阻碍了肝细胞来源的极低密度脂蛋白向窦状管腔的通道,从而导致胆固醇和甘油三酯滞留在肝脏中 [46] 。而另一种假设由Herrnberger等人提出,他们认为源于血液的乳糜微粒残余物,是肝细胞合成极低密度脂蛋白所必需的,而LSECs毛细血管化后,乳糜微粒残余物无法到达肝细胞。而作为一种代偿机制,可能刺激肝脏脂质合成并诱导脂肪变性 [48] 。

在毛细血管形成过程中有几种信号通路参与。Notch信号通路的配体Delta-like 4在人和四氯化碳诱导的肝纤维化小鼠的LSECs中表达上调,并且还介导了纤维化和病理性窦重构之间的恶性循环 [49] 。骨形态发生蛋白9 (Bone morphogenetic protein 9, BMP9)是一种由肝星状细胞产生的循环因子 [50] 。有研究发现,BMP9敲除的小鼠LSEC窗孔数量减少,以及Lyve1和Stab2等多种LSECs的标志基因表达减少,并引发肝窦周纤维化 [51] 。

综上,LSECs的毛细血管化是其在NAFLD中特有的病理改变,毛细血管化发生在NAFLD的早期,并且持续存在,对于NAFLD的进展具有重要意义。但目前电镜仍是反映LSECs毛细血管化的“金指标”,缺乏其他更加便捷的检测手段。

3.3. 内皮细胞对NAFLD中炎症的影响

肝脏单纯脂肪变性到NASH的进展过程会伴随着白细胞粘附内皮细胞,随后白细胞浸润到肝实质内形成炎症灶。NASH中的慢性炎症会会导致肝细胞死亡并对肝实质造成损害。在生理条件下,LSECs作为一种屏障,可以调节循环中的白细胞进入肝实质并发挥抗炎作用 [52] 。在NAFLD进展的早期阶段,一些研究表明LSECs表现出抗炎功能。Tateye等人的研究证明LSECs产生的NO在短期(8周)喂养高脂饮食的小鼠中可以抑制Kupffer细胞的激活 [53] 。在体外,人和小鼠原代LSECs暴露于FFA 16小时后,参与单核细胞和巨噬细胞募集的促炎趋化因子的显著下调 [54] 。

而当疾病进展至NASH晚期阶段时,LSECs获得促炎表型和功能。在NASH小鼠模型中观察到,LSECs在NASH过程中的促炎表型以LSECs表面细胞间黏附分子1 (ICAM-1)、血管细胞黏附分子1 (VCAM-1)和血管黏附蛋白1 (VAP-1的渐进性过度表达为特征 [55] [56] [57] 。LSECs还在NASH中产生许多促炎介质,包括肿瘤坏死因子α (TNF-α)、白介素-6 (IL-6)、白介素-1 (IL-1)和趋化因子(CCL2) [18] [58] 。NASH中LSECs的这种促炎表型与其促炎功能有关。LSECs释放炎症介质,通过激活邻近的Kupffer细胞,并通过促进血液白细胞的招募、黏附和迁移来促进炎症反应 [59] [60] 。LSECs通过表达的典型的黏附分子ICAM-1,VCAM-1,以及非典型黏附分子如VAP-1和stabilin-1来促进白细胞募集。体内和体外研究表明,当这些受体被阻断时,白细胞与肝窦的黏附减少 [55] [61] 。Weston等人证明,在饮食诱导的NASH小鼠模型中,VAP-1敲除或药物阻断会导致白细胞向肝脏募集减少,并减轻纤维化 [55] 。他们还显示,与健康对照组相比,NAFLD患者的血清可溶性VAP-1水平升高 [55] 。此外,有研究发现,无论是在高脂饮食的野生型小鼠还是ob/ob肥胖小鼠上,使用单核细胞上的VCAM-1配体VLA4的抑制剂后,可以抑制单核细胞通过LSECs的黏附和跨内皮迁移,并改善肝脏炎症 [57] 。

LSECs还表达模式识别受体,如稳定剂和Toll样受体(TLR1-9)。除TLR5外,LSEC对TLR配体刺激的反应是激活炎症小体和炎症信号 [62] 。并且LSEC通过分泌不同类型的细胞因子对TLRs的反应是细胞特异性的 [18] 。在NASH中,LSECs分泌细胞因子导致炎症介质的释放,从而促进疾病的进展。LSECs中的一些炎症相关信号是通过LSECs上表达的内吞受体和TLRs之间的相互作用来调节的 [29] 。LSECs表达的TLR9可以通过清道夫受体激活内吞作用,导致炎性细胞因子如IL-1β和IL-6的分泌 [63] 。

尽管在NASH中导致LSECs获得炎症表型和功能的刺激因素尚未确定,但氧化低密度脂蛋白、FFA和脂肪因子等都可能导致LSEC的发炎症反应激活。体外研究表明,用ox-LDL和FFA刺激LSECs分别激活了NF-κB和TLR-4 [64] 。

综上,虽然LSECs在NAFLD的早期阶段起到抗炎作用,但在NAFLD的发展过程中发生了向促炎功能的转变,促进疾病发展至NASH阶段。

3.4. 内皮细胞的分泌信号对NAFLD的影响

此外,LSECs通过释放血管分泌信号在NALFD进展至纤维化阶段的过程中发挥重要作用。NASH小鼠中功能障碍的LSECs产生会促纤维化分子,如转化生长因子-β (TGF-β),进而导致NO生物利用度的降低,促进肝星状细胞的激活,最终导致中细胞外基质的产生和窦性血管收缩 [65] 。在正常肝脏中,健康的LSECs通过VEGF诱导的NO的产生部分地阻止HSCs的激活。而在疾病状态下,毛细血管化的LSECs可以通过分泌纤维连接蛋白A (EIIIA)、纤溶酶激活转化生长因子-β1 (TGF-β1)、血小板衍生生长因子(PDGF)等从而激活肝星状细胞,进而导致疾病向肝纤维化的方向发展 [66] [67] [68] 。此外,健康的LSECs可以将激活的HSCs逆转到静止状态。有研究发现,从正常大鼠肝脏中分离的LSECs可以抑制肝星状细胞的激活,主要表现为α-平滑肌肌动蛋白(α-SMA)的表达减少,而从硫代乙酰胺诱导的肝硬变大鼠肝脏分离的毛细血管化的LSECs促进HSCs的激活,但涉及的旁分泌因子尚未完全确定 [16] 。

LSEC还可以通过肝细胞生长因子(HGF)的旁分泌作用促进肝细胞再生 [69] 。研究表明肝切除后肝内皮细胞中血管生成素-2的表达发生变化。肝再生早期LSEC通过下调血管生成素-2表达,来促进肝细胞增殖 [70] 。

LSECs甚至可以根据不同的损伤而释放不同的血管分泌信号,平衡肝脏再生和纤维化。在急性肝损伤后,LSECs中CXCR7-Id1通路的激活刺激肝脏活性血管分泌因子的产生,从而导致肝再生。相比之下,慢性损伤导致LSECs持续激活FGFR1,扰乱CXCR7-ID1途径,有利于CXCR4驱动的促纤维化血管分泌反应,从而引发肝纤维化 [71] 。

综上,LSEC在肝脏内的细胞串扰中扮演重要角色。可以通过分泌信号来影响肝细胞、肝星状细胞等功能,进而导致疾病的继续进展。

4. 以LSECs为靶点的药物

NAFLD复杂而多因素的发病机制使得药物研发陷入困境。目前,生活方式的改变及其相关并发症的治疗仍然是NAFLD治疗的首要原则。由于NAFLD的已获批准的药物治疗仍然缺乏,迫切需要确定有希望的靶点和开发有效的治疗方法 [72] 。鉴于LESCs在NAFLD发病机制中的作用及其相关的并发症,以及由于其特定的生物学特性,内皮细胞可能成为开发新的治疗策略的“黄金靶点” [29] 。

他汀类药物是一类3-羟基-3-甲基戊二酰辅酶A (HMG-CoA)还原酶抑制剂,可减少胆固醇合成,用于治疗血脂异常和心血管疾病。最近,越来越多的证据表明,他汀类药物通过减轻肝脏脂肪变性、NASH活性和肝硬变而具有保肝作用 [73] [74] 。他汀类药物通过改善内皮损伤,增加eNOS活性,抑制RAS同源家族成员A/Rho相关的卷曲形成激酶(RhoA/Rho-Kinase),以及防止LSEC毛细血管形成而对肝脏发挥有益的作用 [74] 。Pereira等人证实,辛伐他汀对高脂饲料喂养的小鼠的肝脏和脂肪组织微循环障碍具有保护作用。辛伐他汀对微循环障碍的改善是由于氧化和ALE(晚期脂氧化终产物)-RAGE(晚期糖基化终产物受体)压力的减少。同一研究小组报告说,辛伐他汀治疗通过减少肝脏脂肪堆积和脂肪变性来改善肝窦狭窄,从而促进微循环中血流的恢复 [75] 。

如前所述,肝窦内皮细胞分泌的黏附分子在NAFLD的进展中发挥重要作用,因此靶向黏附分子也有可能作为治疗靶点。有研究显示,小鼠和人的原代LSECs与棕榈酸(Palmitic Acid, PA)孵育后,MAP2K3/6 (MMK3/6)和MAPK p38磷酸化水平升高,进而导致VCAM-1表达上调 [76] 。同样有研究表明,VCAM-1Ab治疗组小鼠与免疫球蛋白治疗组小鼠相比,炎症反应相对减轻,表现为肿瘤坏死因子-α、IL-1β、CD36和CCR2mRNA水平降低,以及其他NASH的所有病理特征均有所减轻。此外,该研究还发现,VCAM-1b治疗后,促炎症巨噬细胞(MOMF)数量显著减少 [76] 。除此之外,还有研究表明,VCAM-1药理抑制剂AGI-1067用于治疗晚期NASH小鼠可改善胰岛素抵抗、炎症,并最终改善肝脏损伤。因此,VCAM-1阻断可通过多种机制为NASH提供潜在的治疗途径。

PPAR-α被认为是炎症反应的一般调节器和内皮细胞中ET-1、VCAM-1和炎性细胞因子IL-6等分子的负调节因子 [77] 。具体而言,PPAR-α通过抑制促炎症转录因子的转录活性而发挥抗炎作用,包括核因子-kB (NF-kB)、激活蛋白1 (AP-1)以及信号转导和转录激活因子(STAT)。用PPAR-a激动剂WY-14643治疗高脂饲料喂养的FOZ/FOZ小鼠,可以通过减少炎症标记物和黏附分子的表达,减少NASH小鼠在缺血60分钟和再灌注15分钟时的肝脏脂质堆积,从而发挥保护肝脏的作用 [38] 。并且发现Wy-14,643可能是通过迅速激活核因子-kB和p38通路来减少了血管细胞黏附分子-1,IL-1α,肿瘤坏死因子-α和IL-12的表达 [38] 。

血管生成素/Tie轴是血管生成的关键调节因子,参与内皮功能障碍和免疫细胞浸润。Lefere等人的研究表明,在MCD饮食诱导的NASH和链脲佐菌素–西方饮食诱导的NASH小鼠模型中,Ang-2/Tie2轴抑制剂多肽L1-10可以缓解气球膨胀和纤维化以及肝脏炎症、血管生成和微血管结构扭曲 [78] 。该研究进一步发现,从L1-10治疗的MCD饮食小鼠分离的LSEC中,VCAM-1、ICAM-1和MCP1的表达显著降低,推测L1-10可能是通过改善LSECs的功能来发挥作用 [78] 。此外,体外用L1-10处理脂多糖刺激的LSECs可减少炎症的表达 [78] [79] 。

目前,纳米粒(nanoparticle, NPs)给药方法作为治疗NAFLD的一种方法引起了极大的关注。由于NPs的大小和表面特性,以及它们保护药物降解和控制所需组织(如肝脏)的药物细胞摄取的能力,NPs提供了实现复杂靶向治疗的机会 [80] 。由于缺乏基底膜和大小的肝窦窗口(50~200 nm),LSECs提供了网状结构,有助于NPs被包裹在肝脏中。这种结构有助于高浓度的NPs在Disse空间中积累,并将其分布到其他肝细胞 [81] 。全身给药后,粒径大于6 nm的NPs在肝脏中积聚。最近,载脂蛋白B (ApoB)序列已被用于修饰纳米颗粒,因为ApoB是LSECs表达的清道夫受体稳定素-1和2的配体 [82] 。针对HA受体的透明质酸(Hyaluronic Acid, HA)胶束可用于靶向LSECs和HSCs。携带SV的HA纳米颗粒被证明是一种有效的NP递送系统,有研究构建了双纳米粒子共递送体系(HA-NPs/SMV和CV-NPs/siCol1α1),可以依次突破肝纤维化微环境中的毛细血管化的肝窦内皮细胞与细胞外的胶原沉积。其中携带辛伐他汀的HA纳米粒子HA-NPs/SM选择性递送至毛细血管化的LSECs时,HA-NPs/SMV可以修复间隙,从而增加通透性,使更多的CV-NPs/siCol1α1进入Disse空间,进而缓解纤维化 [83] 。

5. 总结与展望

LSECs在生理条件下调节肝脏的动态平衡。而在NAFLD中,LSECs早期就出现了响应,包括毛细血管形成和LSECs功能障碍。而随着疾病的进一步进展至NASH阶段,LSECs开始表现出促炎表型,使得炎症反应更加严重。并且功能障碍的LSECs不能维持Kupffer细胞和肝星状细胞处于静止状态,因此使得疾病向更严重的纤维化与肝癌的方向进展。目前已有越来越多的研究注意到了LSECs在NAFLD中发挥的重要作用,但仍然还有很多机制尚未阐明。综上,保护LSECs窗孔、改善其功能障碍或调节LSECs与其他细胞类型之间的串扰,对于治疗NAFLD具有巨大潜力,为药物筛选与研发提供新思路。

NOTES

*通讯作者。

参考文献

[1] Younossi, Z.M. (2019) Non-Alcoholic Fatty Liver Disease—A Global Public Health Perspective. Journal of Hepatology, 70, 531-544.
https://doi.org/10.1016/j.jhep.2018.10.033
[2] Friedman, S.L., Neuschwander-Tetri, B.A., Rinella, M., et al. (2018) Mechanisms of NAFLD Development and Therapeutic Strategies. Nature Medicine, 24, 908-922.
https://doi.org/10.1038/s41591-018-0104-9
[3] Eslam, M., Sanyal, A.J. and George, J. (2020) MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology, 158, 1999-2014.
https://doi.org/10.1053/j.gastro.2019.11.312
[4] Riazi, K., Azhari, H., Charette, J.H., et al. (2022) The Prevalence and Incidence of NAFLD Worldwide: A Systematic Review and Meta-Analysis. The Lancet Gastroenterology and Hepatology, 7, 851-861.
https://doi.org/10.1016/S2468-1253(22)00165-0
[5] Fernández, M., Semela, D., Bruix, J., et al. (2009) Angiogenesis in Liver Disease. Journal of Hepatology, 50, 604-620.
https://doi.org/10.1016/j.jhep.2008.12.011
[6] Nasiri-Ansari, N., Androutsakos T., Flessa, C.M., et al. (2022) Endothelial Cell Dysfunction and Nonalcoholic Fatty Liver Disease (NAFLD): A Concise Review. Cells, 11, Article 2511.
https://doi.org/10.3390/cells11162511
[7] Aird, W.C. (2007) Phenotypic Heterogeneity of the Endothelium: I. Structure, Function, and Mechanisms. Circulation Research, 100, 158-173.
https://doi.org/10.1161/01.RES.0000255691.76142.4a
[8] Lafoz, E., Ruart, M., Anton, A., et al. (2020) The Endothelium as a Driver of Liver Fibrosis and Regeneration. Cells, 9, Article 929.
https://doi.org/10.3390/cells9040929
[9] Sun, X. and Harris, E.N. (2020) New Aspects of Hepatic Endothelial Cells in Physiology and Nonalcoholic Fatty Liver Disease. American Journal of Physiology-Cell Physiology, 318, C1200-C1213.
https://doi.org/10.1152/ajpcell.00062.2020
[10] Wisse, E. (1970) An Electron Microscopic Study of the Fenestrated Endothelial Lining of Rat Liver Sinusoids. Journal of Ultrastructure Research, 31, 125-150.
https://doi.org/10.1016/S0022-5320(70)90150-4
[11] DeLeve, L.D., Wang, X., Hu, L., et al. (2004) Rat Liver Sinusoidal Endothelial Cell Phenotype Is Maintained by Paracrine and Autocrine Regulation. American Journal of Physiology-Gastrointestinal and Liver Physiology, 287, G757-G763.
https://doi.org/10.1152/ajpgi.00017.2004
[12] May, D., Djonov, V., Zamir, G., et al. (2011) A Transgenic Model for Conditional Induction and Rescue of Portal Hypertension Reveals a Role of VEGF-Mediated Regulation of Sinusoidal Fenestrations. PLOS ONE, 6, e21478.
https://doi.org/10.1371/journal.pone.0021478
[13] Xie, G., Wang, X., Wang, L., et al. (2012) Role of Differentiation of Liver Sinusoidal Endothelial Cells in Progression and Regression of Hepatic Fibrosis in Rats. Gastroenterology, 142, 918-927.
https://doi.org/10.1053/j.gastro.2011.12.017
[14] Cogger, V.C., Hilmer, S.N., Sullivan, D., et al. (2006) Hyperlipidemia and Surfactants: The Liver Sieve Is a Link. Atherosclerosis, 189, 273-281.
https://doi.org/10.1016/j.atherosclerosis.2005.12.025
[15] Iwakiri, Y. and Kim, M.Y. (2015) Nitric Oxide in Liver Diseases. Trends in Pharmacological Sciences, 36, 524-536.
https://doi.org/10.1016/j.tips.2015.05.001
[16] Deleve, L.D., Wang, X. and Guo, Y. (2008) Sinusoidal Endothelial Cells Prevent Rat Stellate Cell Activation and Promote Reversion to Quiescence. Hepatology, 48, 920-930.
https://doi.org/10.1002/hep.22351
[17] Shetty, S., Lalor, P.F. and Adams, D.H. (2018) Liver Sinusoidal Endothelial Cells-Gatekeepers of Hepatic Immunity. Nature Reviews Gastroenterology & Hepatology, 15, 555-567.
https://doi.org/10.1038/s41575-018-0020-y
[18] Wu, J., Meng, Z., Jiang, M., et al. (2010) Toll-Like Receptor-Induced Innate Immune Responses in Non-Parenchymal Liver Cells Are Cell Type-Specific. Immunology, 129, 363-374.
https://doi.org/10.1111/j.1365-2567.2009.03179.x
[19] Wohlleber, D. and Knolle, P.A. (2016) The Role of Liver Sinusoidal Cells in Local Hepatic Immune Surveillance. Clinical & Translational Immunology, 5, e117.
https://doi.org/10.1038/cti.2016.74
[20] Poisson, J., Lemoinne, S., Boulanger, C., et al. (2017) Liver Sinusoidal Endothelial Cells: Physiology and Role in Liver Diseases. Journal of Hepatology, 66, 212-227.
https://doi.org/10.1016/j.jhep.2016.07.009
[21] Meyer, J., Balaphas, A., Fontana, P., et al. (2020) Platelet Interactions with Liver Sinusoidal Endothelial Cells and Hepatic Stellate Cells Lead to Hepatocyte Proliferation. Cells, 9, Article 1243.
https://doi.org/10.3390/cells9051243
[22] Hilscher, M.B., Sehrawat, T., Arab, J.P., et al. (2019) Mechanical Stretch Increases Expression of CXCL1 in Liver Sinusoidal Endothelial Cells to Recruit Neutrophils, Generate Sinusoidal Microthombi, and Promote Portal Hypertension. Gastroenterology, 157, 193-209.
https://doi.org/10.1053/j.gastro.2019.03.013
[23] Yang, H., Li, N., Du, Y., et al. (2017) Neutrophil Adhesion and Crawling Dynamics on Liver Sinusoidal Endothelial Cells under Shear Flow. Experimental Cell Research, 351, 91-99.
https://doi.org/10.1016/j.yexcr.2017.01.002
[24] Velarde-Ruiz Velasco, J.A., García-Jiménez, E.S., García-Zermeño, K.R., et al. (2019) Extrahepatic Complications of Non-Alcoholic Fatty Liver Disease: Its Impact Beyond the Liver. Revista de Gastroenterología de México (English Edition), 84, 472-481.
https://doi.org/10.1016/j.rgmxen.2019.05.004
[25] Ogresta, D., Mrzljak, A., Cigrovski Berkovic, M., et al. (2022) Coagulation and Endothelial Dysfunction Associated with NAFLD: Current Status and Therapeutic Implications. Journal of Clinical and Translational Hepatology, 10, 339-355.
https://doi.org/10.14218/JCTH.2021.00268
[26] Stahl, E.P., Dhindsa, D.S., Lee, S.K., et al. (2019) Nonalcoholic Fatty Liver Disease and the Heart: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 73, 948-963.
https://doi.org/10.1016/j.jacc.2018.11.050
[27] Fraser, R., Dobbs, B.R. and Rogers, G.W. (1995) Lipoproteins and the Liver Sieve: The Role of the Fenestrated Sinusoidal Endothelium in Lipoprotein Metabolism, Atherosclerosis, and Cirrhosis. Hepatology, 21, 863-874.
https://doi.org/10.1002/hep.1840210337
[28] Pasarín, M., La Mura, V., Gracia-Sancho, J., et al. (2012) Sinusoidal Endothelial Dysfunction Precedes Inflammation and Fibrosis in a Model of NAFLD. PLOS ONE, 7, e32785.
https://doi.org/10.1371/journal.pone.0032785
[29] Wang, X.-K. and Peng, Z.-G. (2021) Targeting Liver Sinusoidal Endothelial Cells: An Attractive Therapeutic Strategy to Control Inflammation in Nonalcoholic Fatty Liver Disease. Frontiers in Pharmacology, 12, Article 655557.
https://doi.org/10.3389/fphar.2021.655557
[30] Furuta, K., Guo, Q., Hirsova, P., et al. (2020) Emerging Roles of Liver Sinusoidal Endothelial Cells in Nonalcoholic Steatohepatitis. Biology, 9, Article 395.
https://doi.org/10.3390/biology9110395
[31] Federico, A., Dallio, M., Masarone, M., et al. (2016) The Epidemiology of Non-Alcoholic Fatty Liver Disease and Its Connection with Cardiovascular Disease: Role of Endothelial Dysfunction. European Review for Medical and Pharmacological Sciences, 20, 4731-4741.
[32] Maslak, E., Gregorius, A. and Chlopicki, S. (2015) Liver Sinusoidal Endothelial Cells (LSECs) Function and NAFLD; NO-Based Therapy Targeted to the Liver. Pharmacological Reports, 67, 689-694.
https://doi.org/10.1016/j.pharep.2015.04.010
[33] Targher, G., Byrne, C.D., Lonardo, A., et al. (2016) Non-Alcoholic Fatty Liver Disease and Risk of Incident Cardiovascular Disease: A Meta-Analysis. Journal of Hepatology, 65, 589-600.
https://doi.org/10.1016/j.jhep.2016.05.013
[34] Schierwagen, R., Uschner, F.E., Magdaleno, F., et al. (2017) Rationale for the Use of Statins in Liver Disease. American Journal of Physiology-Gastrointestinal and Liver Physiology, 312, G407-G412.
https://doi.org/10.1152/ajpgi.00441.2016
[35] Schleicher, J., Guthke, R., Dahmen, U., et al. (2014) A Theoretical Study of Lipid Accumulation in the Liver-Implications for Nonalcoholic Fatty Liver Disease. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1841, 62-69.
https://doi.org/10.1016/j.bbalip.2013.08.016
[36] Sun, C.K., Zhang, X.Y., Zimmermann, A., et al. (2001) Effect of Ischemia-Reperfusion Injury on the Microcirculation of the Steatotic Liver of the Zucker Rat. Transplantation, 72, 1625-1631.
https://doi.org/10.1097/00007890-200111270-00008
[37] Hasegawa, T., Ito, Y., Wijeweera, J., et al. (2007) Reduced Inflammatory Response and Increased Microcirculatory Disturbances during Hepatic Ischemia-Reperfusion Injury in Steatotic Livers of ob/ob Mice. American Journal of Physiology-Gastrointestinal and Liver Physiology, 292, G1385-G1395.
https://doi.org/10.1152/ajpgi.00246.2006
[38] Teoh, N.C., Williams, J., Hartley, J., et al. (2010) Short-Term Therapy with Peroxisome Proliferation-Activator Receptor-Alpha Agonist Wy-14,643 Protects Murine Fatty Liver Against Ischemia-Reperfusion Injury. Hepatology, 51, 996-1006.
https://doi.org/10.1002/hep.23420
[39] Farrell, G.C., Teoh, N.C. and McCuskey, R.S. (2008) Hepatic Microcirculation in Fatty Liver Disease. The Anatomical Record, 291, 684-692.
https://doi.org/10.1002/ar.20715
[40] Davies, P.F. (1995) Flow-Mediated Endothelial Mechanotransduction. Physiological Reviews, 75, 519-560.
https://doi.org/10.1152/physrev.1995.75.3.519
[41] Gonzalez-Paredes, F.J., Hernández Mesa, G., Morales Arraez, D., et al. (2016) Contribution of Cyclooxygenase End Products and Oxidative Stress to Intrahepatic Endothelial Dysfunction in Early Non-Alcoholic Fatty Liver Disease. PLOS ONE, 11, e0156650.
https://doi.org/10.1371/journal.pone.0156650
[42] Fernandez, M. (2015) Molecular Pathophysiology of Portal Hypertension. Hepatology, 61, 1406-1415.
https://doi.org/10.1002/hep.27343
[43] Cogger, V.C., Mohamad, M., Solon-Biet, S.M., et al. (2016) Dietary Macronutrients and the Aging Liver Sinusoidal Endothelial Cell. American Journal of Physiology-Heart and Circulatory Physiology, 310, H1064-H1070.
https://doi.org/10.1152/ajpheart.00949.2015
[44] Peng, Q., Zhang, Q., Xiao, W., et al. (2014) Protective Effects of Sapindus Mukorossi Gaertn against Fatty Liver Disease Induced by High Fat Diet in Rats. Biochemical and Biophysical Research Communications, 450, 685-691.
https://doi.org/10.1016/j.bbrc.2014.06.035
[45] Zhang, Q., Liu, J., Liu, J., et al. (2014) oxLDL Induces Injury and Defenestration of Human Liver Sinusoidal Endothelial Cells via LOX1. Journal of Molecular Endocrinology, 53, 281-293.
https://doi.org/10.1530/JME-14-0049
[46] Hammoutene, A., Rautou, P.E. (2019) Role of Liver Sinusoidal Endothelial Cells in Non-Alcoholic Fatty Liver Disease. Journal of Hepatology, 70, 1278-1291.
https://doi.org/10.1016/j.jhep.2019.02.012
[47] Miyao, M., Kotani, H., Ishida, T., et al. (2015) Pivotal Role of Liver Sinusoidal Endothelial Cells in NAFLD/NASH Progression. Laboratory Investigation, 95, 1130-1144.
https://doi.org/10.1038/labinvest.2015.95
[48] Herrnberger, L., Hennig, R., Kremer, W., et al. (2014) Formation of Fenestrae in Murine Liver Sinusoids Depends on Plasmalemma Vesicle-Associated Protein and Is Required for Lipoprotein Passage. PLOS ONE, 9, e115005.
https://doi.org/10.1371/journal.pone.0115005
[49] Chen, L., Gu, T., Li, B., et al. (2019) Delta-Like Ligand 4/DLL4 Regulates the Capillarization of Liver Sinusoidal Endothelial Cell and Liver Fibrogenesis. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1866, 1663-1675.
https://doi.org/10.1016/j.bbamcr.2019.06.011
[50] Bonnardel, J., T’Jonck, W., Gaublomme, D., et al. (2019) Stellate Cells, Hepatocytes, and Endothelial Cells Imprint the Kupffer Cell Identity on Monocytes Colonizing the Liver Macrophage Niche. Immunity, 51, 638-654.
https://doi.org/10.1016/j.immuni.2019.08.017
[51] Desroches-Castan, A., Tillet, E., Ricard, N., et al. (2019) Bone Morphogenetic Protein 9 Is a Paracrine Factor Controlling Liver Sinusoidal Endothelial Cell Fenestration and Protecting against Hepatic Fibrosis. Hepatology, 70, 1392-1408.
https://doi.org/10.1002/hep.30655
[52] Carambia, A., Freund, B., Schwinge, D., et al. (2014) TGF-β-Dependent Induction of CD4 CD25 Foxp3 Tregs by Liver Sinusoidal Endothelial Cells. Journal of Hepatology, 61, 594-599.
https://doi.org/10.1016/j.jhep.2014.04.027
[53] Tateya, S., Rizzo, N.O., Handa, P., et al. (2011) Endothelial NO/cGMP/VASP Signaling Attenuates Kupffer Cell Activation and Hepatic Insulin Resistance Induced by High-Fat Feeding. Diabetes, 60, 2792-2801.
https://doi.org/10.2337/db11-0255
[54] McMahan, R.H., Porsche, C.E., Edwards, M.G., et al. (2016) Free Fatty Acids Differentially Downregulate Chemokines in Liver Sinusoidal Endothelial Cells: Insights into Non-Alcoholic Fatty Liver Disease. PLOS ONE, 11, e0159217.
https://doi.org/10.1371/journal.pone.0159217
[55] Weston, C.J., Shepherd, E.L., Claridge, L.C., et al. (2015) Vascular Adhesion Protein-1 Promotes Liver Inflammation and Drives Hepatic Fibrosis. Journal of Clinical Investigation, 125, 501-520.
https://doi.org/10.1172/JCI73722
[56] Tomita, K., Tamiya, G., Ando, S., et al. (2006) Tumour Necrosis Factor Alpha Signalling through Activation of Kupffer Cells Plays an Essential Role in Liver Fibrosis of Non-Alcoholic Steatohepatitis in Mice. Gut, 55, 415-424.
https://doi.org/10.1136/gut.2005.071118
[57] Miyachi, Y., Tsuchiya, K., Komiya, C., et al. (2017) Roles for Cell-Cell Adhesion and Contact in Obesity-Induced Hepatic Myeloid Cell Accumulation and Glucose Intolerance. Cell Reports, 18, 2766-2779.
https://doi.org/10.1016/j.celrep.2017.02.039
[58] Dela Peña, A., Leclercq, I., Field, J., et al. (2005) NF-KappaB Activation, Rather than TNF, Mediates Hepatic Inflammation in a Murine Dietary Model of Steatohepatitis. Gastroenterology, 129, 1663-1674.
https://doi.org/10.1053/j.gastro.2005.09.004
[59] Marra, F. and Tacke, F. (2014) Roles for Chemokines in Liver Disease. Gastroenterology, 147, 577-594.
https://doi.org/10.1053/j.gastro.2014.06.043
[60] Nagata, N., Chen, G., Xu, L., et al. (2022) An Update on the Chemokine System in the Development of NAFLD. Medicina, 58, Article 761.
https://doi.org/10.3390/medicina58060761
[61] Edwards, S., Lalor, P.F., Nash, G.B., et al. (2005) Lymphocyte Traffic through Sinusoidal Endothelial Cells Is Regulated by Hepatocytes. Hepatology, 41, 451-459.
https://doi.org/10.1002/hep.20585
[62] Wilkinson, A.L., Qurashi, M. and Shetty, S. (2020) The Role of Sinusoidal Endothelial Cells in the Axis of Inflammation and Cancer within the Liver. Frontiers in Physiology, 11, Article 990.
https://doi.org/10.3389/fphys.2020.00990
[63] Martin-Armas, M., Simon-Santamaria, J., Pettersen, I., et al. (2006) Toll-Like Receptor 9 (TLR9) Is Present in Murine Liver Sinusoidal Endothelial Cells (LSECs) and Mediates the Effect of CpG-Oligonucleotides. Journal of Hepatology, 44, 939-946.
https://doi.org/10.1016/j.jhep.2005.09.020
[64] Sutter, A.G., Palanisamy, A.P., Lench, J.H., et al. (2016) Dietary Saturated Fat Promotes Development of Hepatic Inflammation through Toll-Like Receptor 4 in Mice. Journal of Cellular Biochemistry, 117, 1613-1621.
https://doi.org/10.1002/jcb.25453
[65] Zhou, L.Y., Zeng, H., Wang, S., et al. (2018) Regulatory Role of Endothelial PHD2 in the Hepatic Steatosis. Cellular Physiology and Biochemistry, 48, 1003-1011.
https://doi.org/10.1159/000491968
[66] Jarnagin, W.R., Rockey, D.C., Koteliansky, V.E., et al. (1994) Expression of Variant Fibronectins in Wound Healing: Cellular Source and Biological Activity of the EIIIA Segment in Rat Hepatic Fibrogenesis. Journal of Cell Biology, 127, 2037-2048.
https://doi.org/10.1083/jcb.127.6.2037
[67] Kisseleva, T. and Brenner, D. (2021) Molecular and Cellular Mechanisms of Liver Fibrosis and Its Regression. Nature Reviews Gastroenterology & Hepatology, 18, 151-166.
https://doi.org/10.1038/s41575-020-00372-7
[68] Wan, Y., Li, X., Slevin, E., et al. (2022) Endothelial Dysfunction in Pathological Processes of Chronic Liver Disease during Aging. The FASEB Journal, 36, e22125.
https://doi.org/10.1096/fj.202101426R
[69] Ding, B.S., Nolan, D.J., Butler, J.M., et al. (2010) Inductive Angiocrine Signals from Sinusoidal Endothelium Are Required for Liver Regeneration. Nature, 468, 310-315.
https://doi.org/10.1038/nature09493
[70] Hu, J., Srivastava, K., Wieland, M., et al. (2014) Endothelial Cell-Derived Angiopoietin-2 Controls Liver Regeneration as a Spatiotemporal Rheostat. Science, 343, 416-419.
https://doi.org/10.1126/science.1244880
[71] Ding, B.S., Cao, Z., Lis, R., et al. (2014) Divergent Angiocrine Signals from Vascular Niche Balance Liver Regeneration and Fibrosis. Nature, 505, 97-102.
https://doi.org/10.1038/nature12681
[72] Powell, E.E., Wong, V.W. and Rinella, M. (2021) Non-Alcoholic Fatty Liver Disease. The Lancet, 397, 2212-2224.
https://doi.org/10.1016/S0140-6736(20)32511-3
[73] Yu, Z., Guo, J., Liu, Y., et al. (2022) Nano Delivery of Simvastatin Targets Liver Sinusoidal Endothelial Cells to Remodel Tumor Microenvironment for Hepatocellular Carcinoma. Journal of Nanobiotechnology, 20, Article No. 9.
https://doi.org/10.1186/s12951-021-01205-8
[74] Bravo, M., Raurell, I., Hide, D., et al. (2019) Restoration of Liver Sinusoidal Cell Phenotypes by Statins Improves Portal Hypertension and Histology in Rats with NASH. Scientific Reports, 9, Article No. 20183.
https://doi.org/10.1038/s41598-019-56366-2
[75] da Silva Pereira, E.N.G., Araujo, B.P., Rodrigues, K.L., et al. (2022) Simvastatin Improves Microcirculatory Function in Nonalcoholic Fatty Liver Disease and Downregulates Oxidative and ALE-RAGE Stress. Nutrients, 14, Article 716.
https://doi.org/10.3390/nu14030716
[76] Furuta, K., Guo, Q., Pavelko, K.D., et al. (2021) Lipid-Induced Endothelial Vascular Cell Adhesion Molecule 1 Promotes Nonalcoholic Steatohepatitis Pathogenesis. The Journal of Clinical Investigation, 131, e143690.
https://doi.org/10.1172/JCI143690
[77] Todisco, S., Santarsiero, A., Convertini, P., et al. (2022) PPAR Alpha as a Metabolic Modulator of the Liver: Role in the Pathogenesis of Nonalcoholic Steatohepatitis (NASH). Biology, 11, Article 792.
https://doi.org/10.3390/biology11050792
[78] Lefere, S., Van de Velde, F., Hoorens, A., et al. (2019) Angiopoietin-2 Promotes Pathological Angiogenesis and Is a Therapeutic Target in Murine Nonalcoholic Fatty Liver Disease. Hepatology, 69, 1087-1104.
https://doi.org/10.1002/hep.30294
[79] Ibrahim, S.H. (2021) Sinusoidal Endotheliopathy in Nonalcoholic Steatohepatitis: Therapeutic Implications. American Journal of Physiology-Gastrointestinal and Liver Physiology, 321, G67-G74.
https://doi.org/10.1152/ajpgi.00009.2021
[80] Moosavian, S.A., Sathyapalan, T., Jamialahmadi, T., et al. (2021) The Emerging Role of Nanomedicine in the Management of Nonalcoholic Fatty Liver Disease: A State-of-the-Art Review. Bioinorganic Chemistry and Applications, 2021, Article ID: 4041415.
https://doi.org/10.1155/2021/4041415
[81] Salunkhe, S.A., Chitkara, D., Mahato, R.I., et al. (2021) Lipid Based Nanocarriers for Effective Drug Delivery and Treatment of Diabetes Associated Liver Fibrosis. Advanced Drug Delivery Reviews, 173, 394-415.
https://doi.org/10.1016/j.addr.2021.04.003
[82] Bhandari, S., Larsen, A.K., McCourt, P., et al. (2021) The Scavenger Function of Liver Sinusoidal Endothelial Cells in Health and Disease. Frontiers in Physiology, 12, Article 757469.
https://doi.org/10.3389/fphys.2021.757469
[83] Zhang, L.-F., Wang, X.-H., Zhang, C.-L., et al. (2022) Sequential Nano-Penetrators of Capillarized Liver Sinusoids and Extracellular Matrix Barriers for Liver Fibrosis Therapy. ACS Nano, 16, 14029-14042.
https://doi.org/10.1021/acsnano.2c03858