|
[1]
|
Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Bianchini, G., De Angelis, C., Licata, L. and Gianni, L. (2022) Treatment Landscape of Triple-Negative Breast Cancer-Expanded Options, Evolving Needs. Nature Reviews Clinical Oncology, 19, 91-113. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Dent, R., Trudeau, M., Pritchard, K.I., et al. (2007) Triple-Negative Breast Cancer: Clinical Features and Patterns of Recurrence. Clinical Cancer Research, 13, 4429-4434. [Google Scholar] [CrossRef]
|
|
[4]
|
Perou, C.M., Sørlie, T., Eisen, M.B., et al. (2000) Molecular Portraits of Human Breast Tumours. Nature, 406, 747-752. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Lehmann, B.D., Bauer, J.A., Chen, X., et al. (2011) Identification of Human Triple-Negative Breast Cancer Subtypes and Preclinical Models for Selection of Targeted Therapies. Journal of Clinical Investigation, 121, 2750-2767.
|
|
[6]
|
Lehmann, B.D., Jovanović, B., Chen, X., et al. (2016) Refinement of Triple-Negative Breast Cancer Molecular Subtypes: Implications for Neoadjuvant Chemotherapy Selection. PLOS ONE, 11, e0157368. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Masuda, H., Baggerly, K.A., Wang, Y., et al. (2013) Differential Response to Neoadjuvant Chemotherapy among 7 Triple-Negative Breast Cancer Molecular Subtypes. Clinical Cancer Research, 19, 5533-5540. [Google Scholar] [CrossRef]
|
|
[8]
|
孙晓萌. 三阴性乳腺癌的临床治疗现状及新进展[J]. 实用癌症杂志, 2020, 35(6): 1037-1039.
|
|
[9]
|
van den Ende, N.S., Nguyen, A.H., Jager, A., Kok, M., Debets, R. and van Deurzen, C.H.M. (2023) Triple-Negative Breast Cancer and Predictive Markers of Response to Neoadjuvant Chemotherapy: A Systematic Review. International Journal of Molecular Sciences, 24, Article 2969. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Del Prete, S., Caraglia, M., Luce, A., et al. (2019) Clinical and Pathological Factors Predictive of Response to Neoadjuvant Chemotherapy in Breast Cancer: A Single Center Experience. Oncology Letters, 18, 3873-3879. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
von Minckwitz, G., Untch, M., Blohmer, J.-U., et al. (2012) Definition and Impact of Pathologic Complete Response on Prognosis after Neoadjuvant Chemotherapy in Various Intrinsic Breast Cancer Subtypes. Journal of Clinical Oncology, 30, 1796-1804. [Google Scholar] [CrossRef]
|
|
[12]
|
Rouzier, R., Perou, C.M., Symmans, W.F., et al. (2005) Breast Cancer Molecular Subtypes Respond Differently to Preoperative Chemotherapy. Clinical Cancer Research, 11, 5678-5685. [Google Scholar] [CrossRef]
|
|
[13]
|
Liedtke, C., Mazouni, C., Hess, K.R., et al. (2023) Response to Neoadjuvant Therapy and Long-Term Survival in Patients with Triple-Negative Breast Cancer. Journal of Clinical Oncology, 41, 1809-1815. [Google Scholar] [CrossRef]
|
|
[14]
|
Rastogi, P., anderson, S.J., Bear, H.D., et al. (2008) Preoperative Chemotherapy: Updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27. Journal of Clinical Oncology, 26, 778-785. [Google Scholar] [CrossRef]
|
|
[15]
|
Schettini, F., Giuliano, M., De Placido, S. and Arpino, G. (2016) Nab-Paclitaxel for the Treatment of Triple-Negative Breast Cancer: Rationale, Clinical Data and Future Perspectives. Cancer Treatment Reviews, 50, 129-141. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
张雪琛. FAC和TEC新辅助化疗方案在乳腺癌患者治疗中的效果对比[J]. 中国卫生标准管理, 2020, 11(23): 101-102.
|
|
[17]
|
Untch, M., Jackisch, C., Schneeweiss, A., et al. (2019) NAB-Paclitaxel Improves Disease-Free Survival in Early Breast Cancer: GBG 69-GeparSepto. Journal of Clinical Oncology, 37, 2226-2234. [Google Scholar] [CrossRef]
|
|
[18]
|
Twelves, C., Wong, A., Nowacki, M.P., et al. (2005) Capecitabine as Adjuvant Treatment for Stage III Colon Cancer. The New England Journal of Medicine, 352, 2696-2704. [Google Scholar] [CrossRef]
|
|
[19]
|
Masuda, N., Lee, S.-J., Ohtani, S., et al. (2017) Adjuvant Capecitabine for Breast Cancer after Preoperative Chemotherapy. The New England Journal of Medicine, 376, 2147-2159. [Google Scholar] [CrossRef]
|
|
[20]
|
Lluch, A., Barrios, C.H., Torrecillas, L., Ruiz-Borrego, M., Bines, J., et al. (2020) Phase III Trial of Adjuvant Capecitabine after Standard Neo-/Adjuvant Chemotherapy in Patients with Early Triple-Negative Breast Cancer (GEICAM/2003-11_CIBOMA/2004-01). Journal of Clinical Oncology, 38, 203-213. [Google Scholar] [CrossRef]
|
|
[21]
|
Garutti, M., Pelizzari, G., Bartoletti, M., et al. (2019) Platinum Salts in Patients with Breast Cancer: A Focus on Predictive Factors. International Journal of Molecular Sciences, 20, Article 3390. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Byrski, T., Gronwald, J., Huzarski, T., et al. (2010) Pathologic Complete Response Rates in Young Women with BRCA1-Positive Breast Cancers after Neoadjuvant Chemotherapy. Journal of Clinical Oncology, 28, 375-379. [Google Scholar] [CrossRef]
|
|
[23]
|
Alba, E., Chacon, J.I., Lluch, A., et al. (2012) A Randomized Phase II Trial of Platinum Salts in Basal-Like Breast Cancer Patients in the Neoadjuvant Setting. Results from the GEICAM/2006-03, Multicenter Study. Breast Cancer Research and Treatment, 136, 487-493. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
von Minckwitz, G., Schneeweiss, A., Loibl, S., et al. (2014) Neoadjuvant Carboplatin in Patients with Triple-Negative and HER2-Positive Early Breast Cancer (GeparSixto; GBG 66): A Randomised Phase 2 Trial. The Lancet Oncology, 15, 747-756. [Google Scholar] [CrossRef]
|
|
[25]
|
Sikov, W.M., Berry, D.A., Perou, C.M., et al. (2015) Impact of the Addition of Carboplatin and/or Bevacizumab to Neoadjuvant Once-per-Week Paclitaxel Followed by Dose-Dense Doxorubicin and Cyclophosphamide on Pathologic Complete Response Rates in Stage II to III Triple-Negative Breast Cancer: CALGB 40603 (Alliance). Journal of Clinical Oncology, 33, 13-21. [Google Scholar] [CrossRef]
|
|
[26]
|
Zhang, P., Yin, Y., Mo, H., et al. (2016) Better Pathologic Complete Response and Relapse-Free Survival after Carboplatin Plus Paclitaxel Compared with Epirubicin Plus Paclitaxel as Neoadjuvant Chemotherapy for Locally Advanced Triple-Negative Breast Cancer: A Randomized Phase 2 Trial. Oncotarget, 7, 60647-60656. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Zhang, L., Wu, Z.-Y., Li, J., et al. (2022) Neoadjuvant Docetaxel Plus Carboplatin vs Epirubicin Plus Cyclophosphamide Followed by Docetaxel in Triple-Negative, Early-Stage Breast Cancer (NeoCART): Results from a Multicenter, Randomized Controlled, Open-Label Phase II Trial. International Journal of Cancer, 150, 654-662. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Desai, A.P., Chengappa, M., Go, R.S. and Poonacha, T.K. (2020) Financial Conflicts of Interest among National Comprehensive Cancer Network Clinical Practice Guideline Panelists in 2019. Cancer, 126, 3742-3749. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Shah, S.P., Roth, A., Goya, R., Oloumi, A., et al. (2012) The Clonal and Mutational Evolution Spectrum of Primary Triple-Negative Breast Cancers. Nature, 486, 395-399. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Khosravi-Shahi, P., Cabezón-Gutiérrez, L. and Custodio-Cabello, S. (2018) Metastatic Triple Negative Breast Cancer: Optimizing Treatment Options, New and Emerging Targeted Therapies. Asia-Pacific Journal of Clinical Oncology, 14, 32-39. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Asano, Y., Kashiwagi, S., Goto, W., et al. (2018) Prediction of Treatment Responses to Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer by Analysis of Immune Checkpoint Protein Expression. Journal of Translational Medicine, 16, Article No. 87. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Liu, Z., Li, M., Jiang, Z. and Wang, X. (2018) A Comprehensive Immunologic Portrait of Triple-Negative Breast Cancer. Translational Oncology, 11, 311-329. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Schmid, P., Salgado, R., Park, Y.H., et al. (2020) Pembrolizumab Plus Chemotherapy as Neoadjuvant Treatment of High-Risk, Early-Stage Triple-Negative Breast Cancer: Results from the Phase 1b Open-Label, Multicohort KEYNOTE-173 Study. Annals of Oncology, 31, 569-581. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Nanda, R., Liu, M.C., Yau, C., et al. (2020) Effect of Pembrolizumab Plus Neoadjuvant Chemotherapy on Pathologic Complete Response in Women with Early-Stage Breast Cancer: An Analysis of the Ongoing Phase 2 Adaptively Randomized I-SPY2 Trial. JAMA Oncology, 6, 676-684. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Schmid, P., Cortes, J., Pusztai, L., et al. (2020) Pembrolizumab for Early Triple-Negative Breast Cancer. The New England Journal of Medicine, 382, 810-821. [Google Scholar] [CrossRef]
|
|
[36]
|
Hosseini, A., Gharibi, T., Marofi, F., Babaloo, Z. and Baradaran, B. (2020) CTLA-4: From Mechanism to Autoimmune Therapy. International Immunopharmacology, 80, Article 106221. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Postow, M.A., Chesney, J., Pavlick, A.C., et al. (2015) Nivolumab and Ipilimumab versus Ipilimumab in Untreated Melanoma. The New England Journal of Medicine, 372, 2006-2017. [Google Scholar] [CrossRef]
|
|
[38]
|
Liu, L., Wang, Y., Miao, L., et al. (2018) Combination Immunotherapy of MUC1 mRNA Nano-Vaccine and CTLA-4 Blockade Effectively Inhibits Growth of Triple Negative Breast Cancer. Molecular Therapy, 26, 45-55. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Bernier, C., Soliman, A., Gravel, M., et al. (2018) DZ-2384 Has a Superior Preclinical Profile to Taxanes for the Treatment of Triple-Negative Breast Cancer and Is Synergistic with Anti-CTLA-4 Immunotherapy. Anti-Cancer Drugs, 29, 774-785. [Google Scholar] [CrossRef]
|
|
[40]
|
Nguyen, V.P., Campbell, K.M., Nowicki, T.S., et al. (2023) A Pilot Study of Neoadjuvant Nivolumab, Ipilimumab, and Intralesional Oncolytic Virotherapy for HER2-Negative Breast Cancer. Cancer Research Communications, 3, 1628-1637. [Google Scholar] [CrossRef]
|
|
[41]
|
Han, Y., Yu, X., Li, S., Tian, Y. and Liu, C. (2020) New Perspectives for Resistance to PARP Inhibitors in Triple-Negative Breast Cancer. Frontiers in Oncology, 10, Article 578095. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Robson, M., Im, S.A., Senkus, E., et al. (2017) Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation. The New England Journal of Medicine, 377, 523-533. [Google Scholar] [CrossRef]
|
|
[43]
|
Gelmon, K.A., Tischkowitz, M., Mackay, H., et al. (2011) Olaparib in Patients with Recurrent High-Grade Serous or Poorly Differentiated Ovarian Carcinoma or Triple-Negative Breast Cancer: A Phase 2, Multicentre, Open-Label, Non-Randomised Study. The Lancet Oncology, 12, 852-861. [Google Scholar] [CrossRef]
|
|
[44]
|
Ayoub, J.-P., Wildiers, H., Friedlander, M., et al. (2021) Safety and Efficacy of Veliparib plus Carboplatin/Paclitaxel in Patients with HER2-Negative Metastatic or Locally Advanced Breast Cancer: Subgroup Analyses by Germline BRCA1/2 Mutations and Hormone Receptor Status from the Phase-3 BROCADE3 Trial. Therapeutic Advances in Medical Oncology, 13, 17588359211059601. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Vinayak, S., Tolaney, S.M., Schwartzberg, L., et al. (2019) Open-Label Clinical Trial of Niraparib Combined with Pembrolizumab for Treatment of Advanced or Metastatic Triple-Negative Breast Cancer. JAMA Oncology, 5, 1132-1140. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
von Minckwitz, G. and Martin, M. (2012) Neoadjuvant Treatments for Triple-Negative Breast Cancer (TNBC). Annals of Oncology, 23, VI35-VI39. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Bear, H.D., Tang, G., Rastogi, P., et al. (2012) Bevacizumab Added to Neoadjuvant Chemotherapy for Breast Cancer. The New England Journal of Medicine, 366, 310-320. [Google Scholar] [CrossRef]
|
|
[48]
|
Livasy, C.A., Karaca, G., Nanda, R., et al. (2006) Phenotypic Evaluation of the Basal-Like Subtype of Invasive Breast Carcinoma. Modern Pathology, 19, 264-271. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Carey, L.A., Rugo, H.S., Marcom, P.K., et al. (2012) TBCRC 001: Randomized Phase II Study of Cetuximab in Combination with Carboplatin in Stage IV Triple-Negative Breast Cancer. Journal of Clinical Oncology, 30, 2615-2623. [Google Scholar] [CrossRef]
|
|
[50]
|
Tao, J.J., Castel, P., Radosevic-Robin, N., et al. (2014) Antagonism of EGFR and HER3 Enhances the Response to Inhibitors of the PI3K-Akt Pathway in Triple-Negative Breast Cancer. Science Signaling, 7, ra29. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Massihnia, D., Perez, A., Bazan, V., et al. (2016) A Headlight on Liquid Biopsies: A Challenging Tool for Breast Cancer Management. Tumor Biology, 37, 4263-4273. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Schmid, P., Abraham, J., Chan, S., et al. (2020) Capivasertib Plus Paclitaxel versus Placebo Plus Paclitaxel as First-Line Therapy for Metastatic Triple-Negative Breast Cancer: The PAKT Trial. Journal of Clinical Oncology, 38, 423-433. [Google Scholar] [CrossRef]
|
|
[53]
|
Oliveira, M., Saura, C., Nuciforo, P., et al. (2019) FAIRLANE, a Double-Blind Placebo-Controlled Randomized Phase II Trial of Neoadjuvant Ipatasertib Plus Paclitaxel for Early Triple-Negative Breast Cancer. Annals of Oncology, 30, 1289-1297. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Chu, Y., Zhou, X. and Wang, X. (2021) Antibody-Drug Conjugates for the Treatment of Lymphoma: Clinical Advances and Latest Progress. Journal of Hematology & Oncology, 14, Article No. 88. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Jeon, Y., Jo, U., Hong, J., Gong, G. and Lee, H.J. (2022) Trophoblast Cell-Surface Antigen 2 (TROP2) Expression in Triple-Negative Breast Cancer. BMC Cancer, 22, Article No. 1014. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Cortesi, M., Zanoni, M., Maltoni, R., et al. (2022) TROP2 (Trophoblast Cell-Surface Antigen 2): A Drug Target for Breast Cancer. Expert Opinion on Therapeutic Targets, 26, 593-602. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
邵笛, 余天剑, 邵志敏. 三阴性乳腺癌精准治疗研究进展[J]. 中国普通外科杂志, 2023, 32(11): 1629-1638.
|
|
[58]
|
Rizzo, A., Cusmai, A., Acquafredda, S., Rinaldi, L. and Palmiotti, G. (2022) Ladiratuzumab Vedotin for Metastatic Triple Negative Cancer: Preliminary Results, Key Challenges, and Clinical Potential. Expert Opinion on Investigational Drugs, 31, 495-498. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
McGuinness, J.E. and Kalinsky, K. (2021) Antibody-Drug Conjugates in Metastatic Triple Negative Breast Cancer: A Spotlight on Sacituzumab Govitecan, Ladiratuzumab Vedotin, and Trastuzumab Deruxtecan. Expert Opinion on Biological Therapy, 21, 903-913. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Okajima, D., Yasuda, S., Maejima, T., et al. (2021) Datopotamab Deruxtecan, a Novel TROP2-Directed Antibody-Drug Conjugate, Demonstrates Potent Antitumor Activity by Efficient Drug Delivery to Tumor Cells. Molecular Cancer Therapeutics, 20, 2329-2340. [Google Scholar] [CrossRef]
|
|
[61]
|
Cortés, J., Kim, S.-B., Chung, W.-P., et al. (2022) Trastuzumab Deruxtecan versus Trastuzumab Emtansine for Breast Cancer. The New England Journal of Medicine, 386, 1143-1154. [Google Scholar] [CrossRef]
|
|
[62]
|
Hurvitz, S.A., Hegg, R., Chung, W.P., et al. (2023) Trastuzumab Deruxtecan versus Trastuzumab Emtansine in Patients with HER2-Positive Metastatic Breast Cancer: Updated Results from DESTINY-Breast03, a Randomised, Open-Label, Phase 3 Trial. The Lancet, 401, 105-117. [Google Scholar] [CrossRef]
|
|
[63]
|
Modi, S., Jacot, W., Yamashita, T., et al. (2022) Trastuzumab Deruxtecan in Previously Treated HER2-Low Advanced Breast Cancer. The New England Journal of Medicine, 387, 9-20. [Google Scholar] [CrossRef]
|