[1]
|
Do, M.H., Ngo, H.H., Guo, W.S., Liu, Y., Chang, S.W., Nguyen, D.D., et al. (2018) Challenges in the Application of Microbial Fuel Cells to Wastewater Treatment and Energy Production: A Mini Review. Science of the Total Environment, 639, 910-920. https://doi.org/10.1016/j.scitotenv.2018.05.136
|
[2]
|
Janicek, A., Fan, Y. and Liu, H. (2015) Performance and Stability of Different Cathode Base Materials for Use in Microbial Fuel Cells. Journal of Power Sources, 280, 159-165. https://doi.org/10.1016/j.jpowsour.2015.01.098
|
[3]
|
Wei, J., Liang, P. and Huang, X. (2011) Recent Progress in Electrodes for Microbial Fuel Cells. Bioresource Technology, 102, 9335-9344. https://doi.org/10.1016/j.biortech.2011.07.019
|
[4]
|
Lianos, P. (2017) Review of Recent Trends in Photoelectrocatalytic Conversion of Solar Energy to Electricity and Hydrogen. Applied Catalysis B: Environmental, 210, 235-254. https://doi.org/10.1016/j.apcatb.2017.03.067
|
[5]
|
Liang, H., Jia, Z., Zhang, H., Wang, X. and Wang, J. (2017) Photocatalysis Oxidation Activity Regulation of Ag/TiO2 Composites Evaluated by the Selective Oxidation of Rhodamine B. Applied Surface Science, 422, 1-10. https://doi.org/10.1016/j.apsusc.2017.05.211
|
[6]
|
Hu, Y., Chen, W., Fu, J., Ba, M., Sun, F., Zhang, P., et al. (2018) Hydrothermal Synthesis of BiVO4/TiO2 Composites and Their Application for Degradation of Gaseous Benzene under Visible Light Irradiation. Applied Surface Science, 436, 319-326. https://doi.org/10.1016/j.apsusc.2017.12.054
|
[7]
|
Jung, H.S., Lee, J., Lee, S., Hong, K.S. and Shin, H. (2008) Acid Adsorption on TiO2 Nanoparticles—An Electrochemical Properties Study. The Journal of Physical Chemistry C, 112, 8476-8480. https://doi.org/10.1021/jp711689u
|
[8]
|
Kudo, A. and Miseki, Y. (2009) Heterogeneous Photocatalyst Materials for Water Splitting. Chemical Society Reviews, 38, 253-278. https://doi.org/10.1039/b800489g
|
[9]
|
Fischer, F. (2018) Photoelectrode, Photovoltaic and Photosynthetic Microbial Fuel Cells. Renewable and Sustainable Energy Reviews, 90, 16-27. https://doi.org/10.1016/j.rser.2018.03.053
|
[10]
|
Qian, F., Wang, G. and Li, Y. (2010) Solar-Driven Microbial Photoelectrochemical Cells with a Nanowire Photocathode. Nano Letters, 10, 4686-4691. https://doi.org/10.1021/nl102977n
|
[11]
|
Lu, A., Li, Y., Jin, S., Ding, H., Zeng, C., Wang, X., et al. (2009) Microbial Fuel Cell Equipped with a Photocatalytic Rutile-Coated Cathode. Energy & Fuels, 24, 1184-1190. https://doi.org/10.1021/ef901053j
|
[12]
|
Li, Y., Lu, A., Ding, H., Jin, S., Yan, Y., Wang, C., et al. (2009) Cr(VI) Reduction at Rutile-Catalyzed Cathode in Microbial Fuel Cells. Electrochemistry Communications, 11, 1496-1499. https://doi.org/10.1016/j.elecom.2009.05.039
|
[13]
|
孔德勇. 生物电化学系统阴极还原降解典型抗生素研究[D]: [博士学位论文]. 哈尔滨: 哈尔滨工业大学, 2015: 143.
|
[14]
|
Liu, Y., Xie, J., Ong, C.N., Vecitis, C.D. and Zhou, Z. (2015) Electrochemical Wastewater Treatment with Carbon Nanotube Filters Coupled with in Situ Generated H2O2. Environmental Science: Water Research & Technology, 1, 769-778. https://doi.org/10.1039/c5ew00128e
|
[15]
|
Raptis, D., Ploumistos, A., Zagoraiou, E., Thomou, E., Daletou, M., Sygellou, L., et al. (2018) Co-N Doped Reduced Graphene Oxide as Oxygen Reduction Electrocatalyst Applied to Photocatalytic Fuel Cells. Catalysis Today, 315, 31-35. https://doi.org/10.1016/j.cattod.2018.02.047
|
[16]
|
Zhao, K., Zeng, Q., Bai, J., Li, J., Xia, L., Chen, S., et al. (2017) Enhanced Organic Pollutants Degradation and Electricity Production Simultaneously via Strengthening the Radicals Reaction in a Novel Fenton-Photocatalytic Fuel Cell System. Water Research, 108, 293-300. https://doi.org/10.1016/j.watres.2016.11.002
|
[17]
|
Sun, Z., Cao, R., Huang, M., Chen, D., Zheng, W. and Lin, L. (2015) Effect of Light Irradiation on the Photoelectricity Performance of Microbial Fuel Cell with a Copper Oxide Nanowire Photocathode. Journal of Photochemistry and Photobiology A: Chemistry, 300, 38-43. https://doi.org/10.1016/j.jphotochem.2014.12.003
|
[18]
|
Tajdid Khajeh, R., Aber, S. and Nofouzi, K. (2020) Efficient Improvement of Microbial Fuel Cell Performance by the Modification of Graphite Cathode via Electrophoretic Deposition of CuO/ZnO. Materials Chemistry and Physics, 240, Article 122208. https://doi.org/10.1016/j.matchemphys.2019.122208
|
[19]
|
Khalil, A., Nasser, W.S., Osman, T.A., Toprak, M.S., Muhammed, M. and Uheida, A. (2019) Surface Modified of Polyacrylonitrile Nanofibers by TiO2/MWCNT for Photodegradation of Organic Dyes and Pharmaceutical Drugs under Visible Light Irradiation. Environmental Research, 179, Article 108788. https://doi.org/10.1016/j.envres.2019.108788
|
[20]
|
Long, X., Wang, H., Wang, C., Cao, X. and Li, X. (2019) Enhancement of Azo Dye Degradation and Power Generation in a Photoelectrocatalytic Microbial Fuel Cell by Simple Cathodic Reduction on Titania Nanotube Arrays Electrode. Journal of Power Sources, 415, 145-153. https://doi.org/10.1016/j.jpowsour.2019.01.069
|
[21]
|
Xu, P., Zheng, D., Xie, Z., He, Q. and Yu, J. (2020) The Degradation of Ibuprofen in a Novel Microbial Fuel Cell with PANi@CNTs/SS Bio-Anode and CuInS2 Photocatalytic Cathode: Property, Efficiency and Mechanism. Journal of Cleaner Production, 265, Article 121872. https://doi.org/10.1016/j.jclepro.2020.121872
|
[22]
|
Reza, K.M., Kurny, A. and Gulshan, F. (2015) Parameters Affecting the Photocatalytic Degradation of Dyes Using TiO2: A Review. Applied Water Science, 7, 1569-1578. https://doi.org/10.1007/s13201-015-0367-y
|
[23]
|
Wu, H., Lee, S., Lu, W. and Chang, K. (2015) Piezoresistive Effects Enhanced the Photocatalytic Properties of Cu2O/CuO Nanorods. Applied Surface Science, 344, 236-241. https://doi.org/10.1016/j.apsusc.2015.03.122
|
[24]
|
Bhowmick, G.D., Noori, M.T., Das, I., Neethu, B., Ghangrekar, M.M. and Mitra, A. (2018) Bismuth Doped TiO2 as an Excellent Photocathode Catalyst to Enhance the Performance of Microbial Fuel Cell. International Journal of Hydrogen Energy, 43, 7501-7510. https://doi.org/10.1016/j.ijhydene.2018.02.188
|
[25]
|
Ye, Y., Bruning, H., Li, X., Yntema, D. and Rijnaarts, H.H.M. (2018) Significant Enhancement of Micropollutant Photocatalytic Degradation Using a TiO2 Nanotube Array Photoanode Based Photocatalytic Fuel Cell. Chemical Engineering Journal, 354, 553-562. https://doi.org/10.1016/j.cej.2018.08.064
|
[26]
|
Zhang, J., Yu, J., Zhang, Y., Li, Q. and Gong, J.R. (2011) Visible Light Photocatalytic H2-Production Activity of CuS/ZnS Porous Nanosheets Based on Photoinduced Interfacial Charge Transfer. Nano Letters, 11, 4774-4779. https://doi.org/10.1021/nl202587b
|
[27]
|
Reza, K.M., Kurny, A. and Gulshan, F. (2015) Parameters Affecting the Photocatalytic Degradation of Dyes Using Tio2: A Review. Applied Water Science, 7, 1569-1578. https://doi.org/10.1007/s13201-015-0367-y
|
[28]
|
Ahmadpour, T., Aber, S. and Hosseini, M.G. (2020) Improved Dye Degradation and Simultaneous Electricity Generation in a Photoelectrocatalytic Microbial Fuel Cell Equipped with AgBr/CuO Hybrid Photocathode. Journal of Power Sources, 474, Article 228589. https://doi.org/10.1016/j.jpowsour.2020.228589
|
[29]
|
Shao, F., Hernández-Ramírez, F., Prades, J.D., Fàbrega, C., Andreu, T. and Morante, J.R. (2014) Copper (II) Oxide Nanowires for P-Type Conductometric NH3 Sensing. Applied Surface Science, 311, 177-181. https://doi.org/10.1016/j.apsusc.2014.05.038
|
[30]
|
Jia, Y., Zhang, D., You, H., Li, W. and Jiang, K. (2018) Benthic Microbial Fuel Cell Equipped with a Photocatalytic Cu2O-Coated Cathode. Journal of Nanoparticle Research, 21, Article No. 3. https://doi.org/10.1007/s11051-018-4444-7
|
[31]
|
张杰, 李会鹏, 赵华, 等. 高比表面积g-C3N4的制备及其在光催化制氢中的应用研究进展[J]. 现代化工, 2018, 38(11): 67-71.
|
[32]
|
张茗迪, 贾玉红, 尤宏, 付亮, 李维国. g-C3N4/Cu2O/CF电极制备及在微生物燃料电池中的应用[J]. 环境科学学报, 2019, 39(9): 2945-2952.
|
[33]
|
Meng, W., Zhou, X., Qiu, Z., Liu, C., Chen, J., Yue, W., et al. (2016) Reduced Graphene Oxide-Supported Aggregates of CuInS2 Quantum Dots as an Effective Hybrid Electron Acceptor for Polymer-Based Solar Cells. Carbon, 96, 532-540. https://doi.org/10.1016/j.carbon.2015.09.068
|
[34]
|
Zhu, J., Wang, S., Wang, J., Zhang, D. and Li, H. (2011) Highly Active and Durable Bi2O3/TiO2 Visible Photocatalyst in Flower-Like Spheres with Surface-Enriched Bi2O3 Quantum Dots. Applied Catalysis B: Environmental, 102, 120-125. https://doi.org/10.1016/j.apcatb.2010.11.032
|
[35]
|
Wang, S., Yang, X., Zhu, Y., Su, Y. and Li, C. (2014) Solar-Assisted Dual Chamber Microbial Fuel Cell with a CuInS2 Photocathode. RSC Advances, 4, 23790-23796. https://doi.org/10.1039/c4ra02488e
|
[36]
|
Hou, Y., Abrams, B.L., Vesborg, P.C.K., Björketun, M.E., Herbst, K., Bech, L., et al. (2011) Bioinspired Molecular Co-Catalysts Bonded to a Silicon Photocathode for Solar Hydrogen Evolution. Nature Materials, 10, 434-438. https://doi.org/10.1038/nmat3008
|
[37]
|
王珊珊, 殷淑静, 梁海锋, 等. 金催化的硅纳米线的可控制备及光学特性研究[J]. 应用光学, 2019, 40(5): 738-745.
|
[38]
|
Han, H., Shi, C., Zhang, N., Yuan, L. and Sheng, G. (2018) Visible-Light-Enhanced Cr (VI) Reduction at Pd-Decorated Silicon Nanowire Photocathode in Photoelectrocatalytic Microbial Fuel Cell. Science of the Total Environment, 639, 1512-1519. https://doi.org/10.1016/j.scitotenv.2018.05.271
|
[39]
|
Han, H., Shi, C., Yuan, L. and Sheng, G. (2017) Enhancement of Methyl Orange Degradation and Power Generation in a Photoelectrocatalytic Microbial Fuel Cell. Applied Energy, 204, 382-389. https://doi.org/10.1016/j.apenergy.2017.07.032
|
[40]
|
Payan, A., Fattahi, M. and Roozbehani, B. (2018) Synthesis, Characterization and Evaluations of TiO2 Nanostructures Prepared from Different Titania Precursors for Photocatalytic Degradation of 4-Chlorophenol in Aqueous Solution. Journal of Environmental Health Science and Engineering, 16, 41-54. https://doi.org/10.1007/s40201-018-0295-5
|
[41]
|
刘畅. 天然辉钼矿石与TiO2的负载材料对微生物燃料电池阴极的协同作用[D]: [博士学位论文]. 呼和浩特: 内蒙古大学, 2018.
|
[42]
|
Guo, D., Wei, H.-F., Yu, X.-Y., Xia, Q., Chen, Z., Zhang, J.-R., Song, R.-B. and Zhu, J.-J. (2018) Plasmon-Enhanced Cathodic Reduction for Accelerating Electricity Generation in Visible-Light Assisted Microbial Fuel Cells. Nano Energy, 57, Article 30948. https://doi.org/10.1016/j.nanoen.2018.12.043
|
[43]
|
Liao, Q., Li, L., Chen, R., Zhu, X., Wang, H., Ye, D., et al. (2015) Respective Electrode Potential Characteristics of Photocatalytic Fuel Cell with Visible-Light Responsive Photoanode and Air-Breathing Cathode. International Journal of Hydrogen Energy, 40, 16547-16555. https://doi.org/10.1016/j.ijhydene.2015.10.002
|
[44]
|
Yan, K., Yang, Y., Zhu, Y. and Zhang, J. (2017) Highly Selective Self-Powered Sensing Platform for p-Nitrophenol Detection Constructed with a Photocathode-Based Photocatalytic Fuel Cell. Analytical Chemistry, 89, 8599-8603. https://doi.org/10.1021/acs.analchem.7b02402
|
[45]
|
Xin, Y., Wang, G., Zhu, X., Gao, M., Liu, Y. and Chen, Q. (2017) Photodegradation Performance and Mechanism of 4-Nonylphenol by WO3/TiO2 and TiO2 Nanotube Array Photoelectrodes. Environmental Technology, 38, 3084-3092. https://doi.org/10.1080/09593330.2017.1290143
|
[46]
|
Ajmal, A., Majeed, I., Malik, R.N., Idriss, H. and Nadeem, M.A. (2014) Principles and Mechanisms of Photocatalytic Dye Degradation on Tio2based Photocatalysts: A Comparative Overview. RSC Advances, 4, 37003-37026. https://doi.org/10.1039/c4ra06658h
|
[47]
|
Hasegawa, K. and Neta, P. (1978) Rate Constants and Mechanisms of Reaction of Chloride (Cl2-) Radicals. The Journal of Physical Chemistry, 82, 854-857. https://doi.org/10.1021/j100497a003
|
[48]
|
Tan, X., Bai, J., Zheng, J., Zhang, Y., Li, J., Zhou, T., et al. (2019) Photocatalytic Fuel Cell Based on Sulfate Radicals Converted from Sulfates in Situ for Wastewater Treatment and Chemical Energy Utilization. Catalysis Today, 335, 485-491. https://doi.org/10.1016/j.cattod.2019.02.014
|
[49]
|
Daghrir, R., Drogui, P. and Robert, D. (2012) Photoelectrocatalytic Technologies for Environmental Applications. Journal of Photochemistry and Photobiology A: Chemistry, 238, 41-52. https://doi.org/10.1016/j.jphotochem.2012.04.009
|
[50]
|
Antolini, E. (2019) Photoelectrocatalytic Fuel Cells and Photoelectrode Microbial Fuel Cells for Wastewater Treatment and Power Generation. Journal of Environmental Chemical Engineering, 7, Article 103241. https://doi.org/10.1016/j.jece.2019.103241
|
[51]
|
Lee, S., Ho, L., Ong, S., Wong, Y., Voon, C., Khalik, W.F., et al. (2017) A Highly Efficient Immobilized ZnO/Zn Photoanode for Degradation of Azo Dye Reactive Green 19 in a Photocatalytic Fuel Cell. Chemosphere, 166, 118-125. https://doi.org/10.1016/j.chemosphere.2016.09.082
|
[52]
|
Soltani, T. and Entezari, M.H. (2013) Photolysis and Photocatalysis of Methylene Blue by Ferrite Bismuth Nanoparticles under Sunlight Irradiation. Journal of Molecular Catalysis A: Chemical, 377, 197-203. https://doi.org/10.1016/j.molcata.2013.05.004
|
[53]
|
Talooki, E.F., Ghorbani, M., Rahimnejad, M. and Lashkenari, M.S. (2020) Evaluation of a Visible Light-Responsive Polyaniline Nanofiber-Cadmium Sulfide Quantum Dots Photocathode for Simultaneous Hexavalent Chromium Reduction and Electricity Generation in Photo-Microbial Fuel Cell. Journal of Electroanalytical Chemistry, 873, Article 114469. https://doi.org/10.1016/j.jelechem.2020.114469
|