[1]
|
中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版) [J]. 中华糖尿病杂志, 2021, 13(4): 315-409.
|
[2]
|
Zhang, L., Long, J., Jiang, W., Shi, Y., He, X., Zhou, Z., et al. (2016) Trends in Chronic Kidney Disease in China. New England Journal of Medicine, 375, 905-906. https://doi.org/10.1056/nejmc1602469
|
[3]
|
Papatheodorou, K., Papanas, N., Banach, M., Papazoglou, D. and Edmonds, M. (2016) Complications of Diabetes 2016. Journal of Diabetes Research, 2016, Article ID: 6989453. https://doi.org/10.1155/2016/6989453
|
[4]
|
Janghorbani, M., Van Dam, R.M., Willett, W.C. and Hu, F.B. (2007) Systematic Review of Type 1 and Type 2 Diabetes Mellitus and Risk of Fracture. American Journal of Epidemiology, 166, 495-505. https://doi.org/10.1093/aje/kwm106
|
[5]
|
中华医学会骨质疏松和骨矿盐疾病分会. 原发性骨质疏松症诊疗指南(2022) [J]. 中国全科医学, 2022, 26(14): 1671-1691.
|
[6]
|
Mohsin, S., Baniyas, M.M., AlDarmaki, R.S., Tekes, K., Kalász, H. and Adeghate, E.A. (2019) An Update on Therapies for the Treatment of Diabetes-Induced Osteoporosis. Expert Opinion on Biological Therapy, 19, 937-948. https://doi.org/10.1080/14712598.2019.1618266
|
[7]
|
Jackuliak, P. and Payer, J. (2014) Osteoporosis, Fractures, and Diabetes. International Journal of Endocrinology, 2014, Article ID: 820615. https://doi.org/10.1155/2014/820615
|
[8]
|
Neglia, C., Argentiero, A., Chitano, G., Agnello, N., Ciccarese, R., Vigilanza, A., et al. (2016) Diabetes and Obesity as Independent Risk Factors for Osteoporosis: Updated Results from the ROIS/EMEROS Registry in a Population of Five Thousand Post-Menopausal Women Living in a Region Characterized by Heavy Environmental Pressure. International Journal of Environmental Research and Public Health, 13, Article No. 1067. https://doi.org/10.3390/ijerph13111067
|
[9]
|
Napoli, N., Chandran, M., Pierroz, D.D., Abrahamsen, B., Schwartz, A.V. and Ferrari, S.L. (2016) Mechanisms of Diabetes Mellitus-Induced Bone Fragility. Nature Reviews Endocrinology, 13, 208-219. https://doi.org/10.1038/nrendo.2016.153
|
[10]
|
Majumdar, S.R., Leslie, W.D., Lix, L.M., Morin, S.N., Johansson, H., Oden, A., et al. (2016) Longer Duration of Diabetes Strongly Impacts Fracture Risk Assessment: The Manitoba BMD Cohort. The Journal of Clinical Endocrinology & Metabolism, 101, 4489-4496. https://doi.org/10.1210/jc.2016-2569
|
[11]
|
Aung, M., Amin, S., Gulraiz, A., Gandhi, F.R., Pena Escobar, J.A. and Malik, B.H. (2020) The Future of Metformin in the Prevention of Diabetes-Related Osteoporosis. Cureus, 12, e10412. https://doi.org/10.7759/cureus.10412
|
[12]
|
Vestergaard, P., Rejnmark, L. and Mosekilde, L. (2005) Relative Fracture Risk in Patients with Diabetes Mellitus, and the Impact of Insulin and Oral Antidiabetic Medication on Relative Fracture Risk. Diabetologia, 48, 1292-1299. https://doi.org/10.1007/s00125-005-1786-3
|
[13]
|
Oei, L., Zillikens, M.C., Dehghan, A., Buitendijk, G.H.S., Castaño-Betancourt, M.C., Estrada, K., et al. (2013) High Bone Mineral Density and Fracture Risk in Type 2 Diabetes as Skeletal Complications of Inadequate Glucose Control: The Rotterdam Study. Diabetes Care, 36, 1619-1628. https://doi.org/10.2337/dc12-1188
|
[14]
|
Ma, P., Gu, B., Ma, J., E, L., Wu, X., Cao, J., et al. (2010) Glimepiride Induces Proliferation and Differentiation of Rat Osteoblasts via the PI3-Kinase/Akt Pathway. Metabolism, 59, 359-366. https://doi.org/10.1016/j.metabol.2009.08.003
|
[15]
|
Abe, H., Shikuma, J., Suwanai, H., Sano, K., Okumura, T., Kan, K., et al. (2019) Assessing Hypoglycemia Frequency Using Flash Glucose Monitoring in Older Japanese Patients with Type 2 Diabetes Receiving Oral Hypoglycemic Agents. Geriatrics & Gerontology International, 19, 1030-1035. https://doi.org/10.1111/ggi.13765
|
[16]
|
Kalaitzoglou, E., Fowlkes, J.L., Popescu, I. and Thrailkill, K.M. (2018) Diabetes Pharmacotherapy and Effects on the Musculoskeletal System. Diabetes/Metabolism Research and Reviews, 35, e3100. https://doi.org/10.1002/dmrr.3100
|
[17]
|
Paschou, S.Α., Dede, A.D., Anagnostis, P.G., Vryonidou, A., Morganstein, D. and Goulis, D.G. (2017) Type 2 Diabetes and Osteoporosis: A Guide to Optimal Management. The Journal of Clinical Endocrinology & Metabolism, 102, 3621-3634. https://doi.org/10.1210/jc.2017-00042
|
[18]
|
Benvenuti, S., Cellai, I., Luciani, P., Deledda, C., Baglioni, S., Giuliani, C., et al. (2007) Rosiglitazone Stimulates Adipogenesis and Decreases Osteoblastogenesis in Human Mesenchymal Stem Cells. Journal of Endocrinological Investigation, 30, RC26-RC30. https://doi.org/10.1007/bf03350807
|
[19]
|
Shockley, K.R., Lazarenko, O.P., Czernik, P.J., Rosen, C.J., Churchill, G.A. and Lecka‐Czernik, B. (2008) Pparγ2 Nuclear Receptor Controls Multiple Regulatory Pathways of Osteoblast Differentiation from Marrow Mesenchymal Stem Cells. Journal of Cellular Biochemistry, 106, 232-246. https://doi.org/10.1002/jcb.21994
|
[20]
|
Schwartz, A.V. and Sellmeyer, D.E. (2007) Thiazolidinediones: New Evidence of Bone Loss. The Journal of Clinical Endocrinology & Metabolism, 92, 1232-1234. https://doi.org/10.1210/jc.2007-0328
|
[21]
|
Zhu, Z., Jiang, Y. and Ding, T. (2014) Risk of Fracture with Thiazolidinediones: An Updated Meta-Analysis of Randomized Clinical Trials. Bone, 68, 115-123. https://doi.org/10.1016/j.bone.2014.08.010
|
[22]
|
Huang, L., Zhong, W., Liang, X., Wang, H., Fu, S. and Luo, Z. (2024) Meta-Analysis on the Association between DPP-4 Inhibitors and Bone Mineral Density and Osteoporosis. Journal of Clinical Densitometry, 27, Article ID: 101455. https://doi.org/10.1016/j.jocd.2023.101455
|
[23]
|
Paschou, S.Α., Anagnostis, P., Pavlou, D.I., Vryonidou, A., Goulis, D.G. and Lambrinoudaki, I. (2019) Diabetes in Menopause: Risks and Management. Current Vascular Pharmacology, 17, 556-563. https://doi.org/10.2174/1570161116666180625124405
|
[24]
|
Chino, Y., Samukawa, Y., Sakai, S., Nakai, Y., Yamaguchi, J., Nakanishi, T., et al. (2014) SGLT2 Inhibitor Lowers Serum Uric Acid through Alteration of Uric Acid Transport Activity in Renal Tubule by Increased Glycosuria. Biopharmaceutics & Drug Disposition, 35, 391-404. https://doi.org/10.1002/bdd.1909
|
[25]
|
Koike, Y., Shirabe, S., Maeda, H., Yoshimoto, A., Arai, K., Kumakura, A., et al. (2019) Effect of Canagliflozin on the Overall Clinical State Including Insulin Resistance in Japanese Patients with Type 2 Diabetes Mellitus. Diabetes Research and Clinical Practice, 149, 140-146. https://doi.org/10.1016/j.diabres.2019.01.029
|
[26]
|
Lupsa, B.C. and Inzucchi, S.E. (2018) Use of SGLT2 Inhibitors in Type 2 Diabetes: Weighing the Risks and Benefits. Diabetologia, 61, 2118-2125. https://doi.org/10.1007/s00125-018-4663-6
|
[27]
|
Watts, N.B., Bilezikian, J.P., Usiskin, K., Edwards, R., Desai, M., Law, G., et al. (2016) Effects of Canagliflozin on Fracture Risk in Patients with Type 2 Diabetes Mellitus. The Journal of Clinical Endocrinology & Metabolism, 101, 157-166. https://doi.org/10.1210/jc.2015-3167
|
[28]
|
Lu, N., Sun, H., Yu, J., Wang, X., Liu, D., Zhao, L., et al. (2015) Glucagon-Like Peptide-1 Receptor Agonist Liraglutide Has Anabolic Bone Effects in Ovariectomized Rats without Diabetes. PLOS ONE, 10, e0132744. https://doi.org/10.1371/journal.pone.0132744
|
[29]
|
Yamada, C., Yamada, Y., Tsukiyama, K., Yamada, K., Udagawa, N., Takahashi, N., et al. (2007) The Murine Glucagon-Like Peptide-1 Receptor Is Essential for Control of Bone Resorption. Endocrinology, 149, 574-579. https://doi.org/10.1210/en.2007-1292
|
[30]
|
Cai, T., Li, H., Jiang, L., Wang, H., Luo, M., Su, X., et al. (2021) Effects of GLP-1 Receptor Agonists on Bone Mineral Density in Patients with Type 2 Diabetes Mellitus: A 52-Week Clinical Study. BioMed Research International, 2021, Article ID: 3361309. https://doi.org/10.1155/2021/3361309
|
[31]
|
Cheng, L., Hu, Y., Li, Y., Cao, X., Bai, N., Lu, T., et al. (2019) Glucagon‐Like Peptide‐1 Receptor Agonists and Risk of Bone Fracture in Patients with Type 2 Diabetes: A Meta‐Analysis of Randomized Controlled Trials. Diabetes/Metabolism Research and Reviews, 35, e3168. https://doi.org/10.1002/dmrr.3168
|
[32]
|
张岩松, 王可可, 刘力嘉, 等. GLP-1受体激动剂对2型糖尿病患者骨折风险影响的Meta分析[J]. 中国骨质疏松杂志, 2018, 24(7): 847-855.
|
[33]
|
Yang, J., Zhang, X., Wang, W. and Liu, J. (2010) Insulin Stimulates Osteoblast Proliferation and Differentiation through ERK and PI3K in MG‐63 Cells. Cell Biochemistry and Function, 28, 334-341. https://doi.org/10.1002/cbf.1668
|
[34]
|
Cornish, J., Callon, K.E. and Reid, I.R. (1996) Insulin Increases Histomorphometric Indices of Bone Formation in Vivo. Calcified Tissue International, 59, 492-495. https://doi.org/10.1007/s002239900163
|
[35]
|
Clemens, T.L. and Karsenty, G. (2010) The Osteoblast: An Insulin Target Cell Controlling Glucose Homeostasis. Journal of Bone and Mineral Research, 26, 677-680. https://doi.org/10.1002/jbmr.321
|
[36]
|
Thrailkill, K.M., Lumpkin, C.K., Bunn, R.C., Kemp, S.F. and Fowlkes, J.L. (2005) Is Insulin an Anabolic Agent in Bone? Dissecting the Diabetic Bone for Clues. American Journal of Physiology-Endocrinology and Metabolism, 289, E735-E745. https://doi.org/10.1152/ajpendo.00159.2005
|
[37]
|
Dutta, M., Pakhetra, R. and Garg, M. (2012) Evaluation of Bone Mineral Density in Type 2 Diabetes Mellitus Patients before and after Treatment. Medical Journal Armed Forces India, 68, 48-52. https://doi.org/10.1016/s0377-1237(11)60120-2
|
[38]
|
Schwartz, A.V., Hillier, T.A., Sellmeyer, D.E., Resnick, H.E., Gregg, E., Ensrud, K.E., et al. (2002) Older Women with Diabetes Have a Higher Risk of Falls. Diabetes Care, 25, 1749-1754. https://doi.org/10.2337/diacare.25.10.1749
|
[39]
|
Ivers, R.Q., Cumming, R.G., Mitchell, P. and Peduto, A.J. (2001) Diabetes and Risk of Fracture: The Blue Mountains Eye Study. Diabetes Care, 24, 1198-1203. https://doi.org/10.2337/diacare.24.7.1198
|
[40]
|
Cremers, S. and Papapoulos, S. (2011) Pharmacology of Bisphosphonates. Bone, 49, 42-49. https://doi.org/10.1016/j.bone.2011.01.014
|
[41]
|
Vestergaard, P., Rejnmark, L. and Mosekilde, L. (2010) Are Antiresorptive Drugs Effective against Fractures in Patients with Diabetes? Calcified Tissue International, 88, 209-214. https://doi.org/10.1007/s00223-010-9450-4
|
[42]
|
Eastell, R., Vittinghoff, E., Lui, L., Ewing, S.K., Schwartz, A.V., Bauer, D.C., et al. (2020) Diabetes Mellitus and the Benefit of Antiresorptive Therapy on Fracture Risk. Journal of Bone and Mineral Research, 37, 2121-2131. https://doi.org/10.1002/jbmr.4697
|
[43]
|
Keegan, T.H.M., Schwartz, A.V., Bauer, D.C., Sellmeyer, D.E. and Kelsey, J.L. (2004) Effect of Alendronate on Bone Mineral Density and Biochemical Markers of Bone Turnover in Type 2 Diabetic Women. Diabetes Care, 27, 1547-1553. https://doi.org/10.2337/diacare.27.7.1547
|
[44]
|
Schwartz, A., Vittinghof, E., Bauer, D.C., Cummings, S.R., Grey, A., McClung, M.R. and Black, D.M. (2015) Bisphosphonates Reduce Fracture Risk in Postmenopausal Women with Diabetes: Results from FIT and HORIZON Trials. American Society for Bone and Mineral Research.
|
[45]
|
Karimi Fard, M., Aminorroaya, A., Kachuei, A., Salamat, M.R., Hadi Alijanvand, M., Aminorroaya Yamini, S., et al. (2018) Alendronate Improves Fasting Plasma Glucose and Insulin Sensitivity, and Decreases Insulin Resistance in Prediabetic Osteopenic Postmenopausal Women: A Randomized Triple‐Blind Clinical Trial. Journal of Diabetes Investigation, 10, 731-737. https://doi.org/10.1111/jdi.12944
|
[46]
|
Cummings, S.R., Martin, J.S., McClung, M.R., Siris, E.S., Eastell, R., Reid, I.R., et al. (2009) Denosumab for Prevention of Fractures in Postmenopausal Women with Osteoporosis. New England Journal of Medicine, 361, 756-765. https://doi.org/10.1056/nejmoa0809493
|
[47]
|
Kiechl, S., Wittmann, J., Giaccari, A., Knoflach, M., Willeit, P., Bozec, A., et al. (2013) Blockade of Receptor Activator of Nuclear Factor-Κb (RANKL) Signaling Improves Hepatic Insulin Resistance and Prevents Development of Diabetes Mellitus. Nature Medicine, 19, 358-363. https://doi.org/10.1038/nm.3084
|
[48]
|
Passeri, E., Benedini, S., Costa, E. and Corbetta, S. (2015) A Single 60 mg Dose of Denosumab Might Improve Hepatic Insulin Sensitivity in Postmenopausal Nondiabetic Severe Osteoporotic Women. International Journal of Endocrinology, 2015, Article ID: 352858. https://doi.org/10.1155/2015/352858
|
[49]
|
Celer, O., Akalın, A. and Oztunali, C. (2016) Effect of Teriparatide Treatment on Endothelial Function, Glucose Metabolism and Inflammation Markers in Patients with Postmenopausal Osteoporosis. Clinical Endocrinology, 85, 556-560. https://doi.org/10.1111/cen.13139
|
[50]
|
Karras, S.N., Anagnostis, P., Antonopoulou, V., Tsekmekidou, X., Koufakis, T., Goulis, D.G., et al. (2017) The Combined Effect of Vitamin D and Parathyroid Hormone Concentrations on Glucose Homeostasis in Older Patients with Prediabetes: A Cross-Sectional Study. Diabetes and Vascular Disease Research, 15, 150-153. https://doi.org/10.1177/1479164117738443
|
[51]
|
Vestergaard Kvist, A., Faruque, J., Vallejo-Yagüe, E., Weiler, S., Winter, E.M. and Burden, A.M. (2021) Cardiovascular Safety Profile of Romosozumab: A Pharmacovigilance Analysis of the US Food and Drug Administration Adverse Event Reporting System (FAERS). Journal of Clinical Medicine, 10, Article No. 1660. https://doi.org/10.3390/jcm10081660
|
[52]
|
Feigh, M., Hjuler, S.T., Andreassen, K.V., Gydesen, S., Ottosen, I., Henriksen, J.E., et al. (2014) Oral Salmon Calcitonin Enhances Insulin Action and Glucose Metabolism in Diet-Induced Obese Streptozotocin-Diabetic Rats. European Journal of Pharmacology, 737, 91-96. https://doi.org/10.1016/j.ejphar.2014.05.016
|
[53]
|
Khosla, S. and Hofbauer, L.C. (2017) Osteoporosis Treatment: Recent Developments and Ongoing Challenges. The Lancet Diabetes & Endocrinology, 5, 898-907. https://doi.org/10.1016/s2213-8587(17)30188-2
|
[54]
|
Kanazawa, I. (2017) Interaction between Bone and Glucose Metabolism. Endocrine Journal, 64, 1043-1053. https://doi.org/10.1507/endocrj.ej17-0323
|
[55]
|
Dionello, C.F., Sá-Caputo, D., Pereira, H.V.F.S., Sousa-Gonçalves, C.R., Maiworm, A.I., Morel, D.S. and Bernardo-Filho, M. (2016) Effects of Whole Body Vibration Exercises on Bone Mineral Density of Women with Postmenopausal Osteoporosis without Medications: Novel Findings and Literature Review. Journal of Musculoskeletal & Neuronal Interactions, 16, 193-203.
|
[56]
|
Liu, X., Gao, X., Tong, J., Yu, L., Xu, M. and Zhang, J. (2022) Improvement of Osteoporosis in Rats with Hind-Limb Unloading Treated with Pulsed Electromagnetic Field and Whole-Body Vibration. Physical Therapy, 102, pzac097. https://doi.org/10.1093/ptj/pzac097
|