Research on Explosion Energy of Type II-Supernova in 11~40MΘ Progenitor Stars Model
DOI: 10.12677/AAS.2013.12003, PDF, HTML, 下载: 3,257  浏览: 14,067  科研立项经费支持
作者: 夏雄平*:桂林理工大学理学院,桂林
关键词: 前新星爆发能II型超新星Progenitor Stars; Explosion Energy; Type II-Supernova
摘要: 本文通过采用四种爆发能的定义,修正了LLPR模型中与爆发能相关的状态方程和II型超新星爆发的模拟程序WLYW-89,模拟了最近修正的主序质量在(:太阳质量)前新星模型数据下的II型超新星的爆发。根据不同壳层下离散的爆发能和随时间变化的爆发能特征,同时对比实验观测的数据。研究结果显示,在四种不同的爆发能定义中,定义是比较符合当前前新星的模型数据,特别是对于中小质量的前新星,模拟结果与实验结果符合比较好。它主要体现在其定义从能量观点进行定义,其激波速度符合实验观测数据,并能缩小理论与实验观测结果的差距。
Abstract: In the paper, we apply four various definitions of explosion energy, based on modified the state equation in LLPR model and the II supernova explosion code “WLYW-89”, to research explosion energy of type II-supernova in new progenitor stars model of the main-sequence mass (: the sun mass). Apply the results of the discrete explosion energy in various mass cell and explosive energy with time, and compare with theoretical and observation results, we find that, in four various definitions of explosion energy, the second definition of explosion energy is the most suitable to supernova explosion in new progenitor stars model, especially, for , theoretical results are good agreement with experimental observation data. It is because that, on one the hand, is defined by the view of energy, on the other hand, its shock velocity in agreement with the experimental observation and it can reduce the gap of theoretical and observation results.
文章引用:夏雄平. 11~40MΘ前新星模型下的II型超新星爆发能研究[J]. 天文与天体物理, 2013, 1(2): 14-19. http://dx.doi.org/10.12677/AAS.2013.12003


[1] S. A. Colgate, M. H. Johnson. Hydrodynamic origin of cosmic rays. Physical Review Letters, 1960, 5(6): 235-238.
[2] S. A. Colgate, R. H. White. The hydrodynamic behavior of su- pernovae explosions. The Astrophysical Journal, 1966, 143: 626- 681.
[3] G. E. Brown, H. A. Bethe and G. Baym. Supernova theory. Nuclear Physics A, 1982, 375(3): 481-532.
[4] T. Kuroda, K. Kotake and T. Takiwaki. Fully general relativistic simulations of core-collapse supernovae with an approximate neutrino transport. The Astrophysical Journal, 2012, 755(1): 11- 60.
[5] S. X. Nakamura, K. Sumiyoshi and T. Stato. Neutrino deuteron reaction in the heating mechanism of core-collapse supernovae. Physical Review C, 2009, 80(3): 035802.
[6] I. Sagert, T. Fischer, M. Hempel, G. Pagliara, J. Schaffner-Bielich, A. Mezzacappa, F.-K. Thielemann and M. Liebendörfer. Signals of the QCD phase transition in core-collapse supernovae. Physical Review Letters, 2009, 102(8): 081101.
[7] B. Dasgupta, A. Dighe, A. Mirizzi and G. G. Raffelt. Spectral split in prompt supernova neutrino burst: Analytic three-flavor treatment. Physical Review D 2008, 77(11): 113007.
[8] D. Y. Tsvetkov, I. M. Volkov, P. V. Baklanov, S. L. Blinnikov and O. Tuchin. Photometric observations and modeling of type IIb supernova 2008ax. Peremennye Zvezdy, 2009, 29(2): 2-13.
[9] K. Nomoto, M. Hashimoto. Presupernova evolution of massive stars. Physics Reports, 1988, 163(1): 13-36.
[10] S. E. Woosley, T. A. Weaver. Presupernova models: Sensitivity to convective algorithm and coulomb corrections. Physics Reports 1988, 163(1): 79-94.
[11] A. Heger, N. Langer. Presupernova evolution of rotating massive stars. II. evolution of the surface properties. Astrophysical Journal, 2000, 544: 1016-1035.
[12] A. Heger, S. E. Woosley and H. C. Spruit. Presupernova evolution of differentially rotating massive stars including magnetic fields. Astrophysical Journal, 2005, 626: 350-363.
[13] S. E. Woosley, A. Heger. The progenitor stars of gamma-ray bursts. Astrophysical Journal, 2006, 637: 914-921.
[14] S. E. Woosley, A. Heger. Nucleosynthesis and remnants in massive stars of solar metallicity. Physics Reports, 2007, 442(1): 269-283.
[15] M. Limongi, A. Chieffi. Presupernova evolution and explosion of massive stars. Journal of Physics: Conference Series, 2010, 202(1): 012002.
[16] S. W. Bruenn. The prompt-shock supernova mechanism. I-The effect of the free-proton mass fraction and the neutrino transport algorithm. Astrophysical Jounal, 1989, 340: 955-965.
[17] S. W. Bruenn. The prompt-shock supernova mechanism. II- Supra- nuclear EOS behavior and the precollapse model. Astrophysical Journal, 1989, 341: 385-400.
[18] S. C. Zhang, Z. H. Xie, Y. R. Wang and W. Z. Wang. Convective instability in the prompt explosion model of type-II supernovae. Chinese Journal of Astronomy and Astrophysics, 1998, 22: 161- 165.
[19] X. P. Xia, Y. Lin. The effects of ion screening on neutrino-nu- cleus interactions in core-collapse supernova explosions. Research in Astronomy and Astrophysics, 2010, 10: 689-695.
[20] D. K. Nadyozhin. Explosion energies, nickel masses and distances of type II plateau supernovae. Monthly Notices of the Royal Astronomical Society, 2003, 346(1): 97-104.
[21] S. J. Smartt, J. J. Eldridge, R. M. Crockett and J. R. Maund. The death of massive stars I. Observational constraints on the progenitors of type II-P supernovae. Monthly Notices of the Royal Astronomical Society, 2009, 395(3): 1409-1437.
[22] D. Q. Lamb, J. M. Lattimer, C. J. Pethick and D. G. Ravenhall. Hot dense matter and stellar collapse. Physical Review Letters, 1978, 41(23): 1623-1626.