基本情况
何向南,教授、博导,中国科学技术大学大数据学院副院长
教育背景
博士, 新加坡国立大学, 计算机学院, 导师: Min-Yen Kan 2011 年 7 月 - 2015 年 12 月
本科, 华东师范大学, 软件学院 2007 年 9 月 - 2011 年 6 月
研究方向
推荐系统、信息检索、数据挖掘、机器学习、因果推理、多媒体
主要学术成绩
Google
学术页面:
https://scholar.google.com.sg/citations?user=X45Go24AAAAJ引用 7900 余次,h-index=39
发表 CCF A 类论文 90 余篇,其中通讯或一作 30 余篇:
- A 类会议:ACM SIGIR 24 篇,WWW 11 篇,KDD 6 篇等
- A 类期刊:IEEE Trans. on Know. Eng. (TKDE) 12 篇,ACM
Trans on Info. Sys. (TOIS) 7 篇等
专利申请 20 余项
论文发表
-
Zhang T, Fang J, Jiang H, et al.
Explainable and Efficient Editing for Large Language Models[C]//THE WEB
CONFERENCE 2025.
-
Xu Y, Wang W, Zhang Y, et al. Personalized
Image Generation with Large Multimodal Models[J]. arXiv preprint
arXiv:2410.14170, 2024.
-
Wu J, Xie Y, Yang Z, et al. Towards robust
alignment of language models: Distributionally robustifying direct preference
optimization[J]. arXiv preprint arXiv:2407.07880, 2024.
-
Ding C, Wu J, Yuan Y, et al. Unified
Parameter-Efficient Unlearning for LLMs[J]. arXiv preprint arXiv:2412.00383,
2024.
-
Li H, Zheng C, Ding S, et al. Be Aware of
the Neighborhood Effect: Modeling Selection Bias under Interference[J]. arXiv
preprint arXiv:2404.19620, 2024.
-
Li S, Liu Z, Luo Y, et al. Towards 3d
molecule-text interpretation in language models[J]. arXiv preprint
arXiv:2401.13923, 2024.
-
Kong X, Wu J, Zhang A, et al. Customizing
language models with instance-wise lora for sequential recommendation[J]. arXiv
preprint arXiv:2408.10159, 2024.
-
Liao J, Chen X, Fu Q, et al. Text-to-image
generation for abstract concepts[C]//Proceedings of the AAAI Conference on
Artificial Intelligence. 2024, 38(4): 3360-3368.
-
Zhu X, Wang S, Lu J, et al. Boosting
few-shot learning via attentive feature regularization[C]//Proceedings of the
AAAI Conference on Artificial Intelligence. 2024, 38(7): 7793-7801.
-
Yu J, Li H, Hao Y, et al. CgT-GAN:
clip-guided text GAN for image captioning[C]//Proceedings of the 31st ACM
International Conference on Multimedia. 2023: 2252-2263.
-
Lu J, Wang S, Zhang X, et al.
Semantic-based selection, synthesis, and supervision for few-shot
learning[C]//Proceedings of the 31st ACM International Conference on
Multimedia. 2023: 3569-3578.
-
Zhang J, Bao K, Zhang Y, et al. Is chatgpt
fair for recommendation? evaluating fairness in large language model
recommendation[C]//Proceedings of the 17th ACM Conference on Recommender
Systems. 2023: 993-999.
-
Li H, Wu K, Zheng C, et al. Removing hidden
confounding in recommendation: a unified multi-task learning approach[J].
Advances in Neural Information Processing Systems, 2023, 36: 54614-54626.
-
Yang Z, Wu J, Wang Z, et al. Generate what
you prefer: Reshaping sequential recommendation via guided diffusion[J].
Advances in Neural Information Processing Systems, 2023, 36: 24247-24261.
-
Sui Y, Wu Q, Wu J, et al. Unleashing the
power of graph data augmentation on covariate distribution shift[J]. Advances
in Neural Information Processing Systems, 2023, 36: 18109-18131.
-
Fang J, Liu W, Gao Y, et al. Evaluating
post-hoc explanations for graph neural networks via robustness analysis[J].
Advances in neural information processing systems, 2023, 36: 72446-72463.
-
Wu J, Chen J, Wu J, et al. Understanding
contrastive learning via distributionally robust optimization[J]. Advances in
Neural Information Processing Systems, 2023, 36: 23297-23320.
-
Jin J, Li H, Feng F, et al. Fairly
recommending with social attributes: a flexible and controllable optimization
approach[J]. Advances in Neural Information Processing Systems, 2023, 36: 21454-21465.