基本情况

李道亮,中国农业大学信息与电气工程学院教授,博士生导师,中欧农业信息技术研究中心、北京市农业物联网工程技术研究中心,先进农业传感北京工程研究中心主任,研究方向为农业信息智能感知与处理。1999年获中国农业大学博士学位,2001年晋升副教授,2003破格晋升教授。先后主持完成国家科技支撑计划、国家863计划、国家自然基金、国家农业科技成果转化基金、霍英东基金、欧盟FP7、国际合作重点等项目50多项。教授农业智能系统、农业信息学、信息系统分析与设计等4门课程。自2003年以来培养博士研究生20名,硕士研究生36名。


研究领域

农业先进传感与智能处理


科研成果

  1. 揭示了溶解氧、氨氮等多参数传感机理,发明了多参数非线性补偿校正模型和智能变送方法,创制了9种参数20多个型号农业传感器并产业化
  2. 创建了多传感器信息融合的动植物生长动态调控模型与方法,开发了全过程实时调控与管理软件平台
  3. 构建了集传感器、采集器、测控终端、平台于一体的农业物联网系统,成果经教育部、天津市和山东省组织鉴定结论为总体国际先进,传感器居国际领先水平,并在19个省市进行了大面积推广应用,累计新增经济效益60多亿元


学术任职

李道亮教授目前是国际信息处理联合会农业信息处理分会主席,information processing in agriculture主编,Intelligent Automation and Soft Computing副主编,computer and electronics in agriculture编委,中国农业工程学会常务理事、信息情报专业委员会主任委员,国家农村信息化指导组专家,山东、湖南、湖北、贵州国家示范省首席科学家,农业部全国农业和农村信息化十二五规划、十三五规划专家组组长,工信部国家农业农村信息化2013-2015行动计划牵头专家,科技部农业与农村信息化十二五专项规划牵头专家,是我国农业信息化学科带头人之一。


科研项目

  1. 2024.11.08-2027.12.31,省、自治区、直辖市科技项目,基于数字化河蟹养殖感知管控技术集成与生产应用
  2. 2024.11.08-2024.12.31,教育部项目,2024年现代农业产业技术体系北京市智慧农业创新团队-智慧渔场
  3. 2024.08.16-2024.12.31,省、自治区、直辖市科技项目,河北省现代农业产业技术体系淡水养殖产业创新团队建设-2024
  4. 2024.06.28-2024.12.31,国家科技部项目,农业水资源高效利用全国重点实验室2024年度专项任务
  5. 2024.06.28-2024.12.31,国家科技部项目,农业水资源高效利用全国重点实验室2024年度专项任务
  6. 2023.12.25-2023.12.31,省、自治区、直辖市科技项目,河北省现代农业产业技术体系淡水养殖产业创新团队建设
  7. 2023.09.01-2027.12.31,国家自然科学基金项目,生命周期异步条件下工厂化鱼菜共生水体氮素动态调控机理研究
  8. 2024.06.18-2025.02.28,国家部委其他科技项目,农业农村信息化业务支撑(2024
  9. 2023.07.13-2024.02.28,国家部委其他科技项目,农业农村信息化发展支撑服务(2023


论文发表

部分代表性论文如下:

  1. Zhao W, Liu C, Li D, et al. Energy-saving techniques in urban aquaponics farms by optimizing equipment operating scheme[J]. Aquaculture, 2024, 587: 740873.
  2. Zhang G, Shen Z, Li D, et al. CAGNet: an improved anchor-free method for shrimp larvae detection in intensive aquaculture[J]. Aquaculture International, 2024, 32(5): 6153-6175.
  3. Wang Z, Zhou H, Zhong P, et al. Cross-view multi-layer perceptron for incomplete multi-view learning[J]. Applied Soft Computing, 2024, 157: 111510.
  4. Lu J, Zhang S, Zhao S, et al. A metric-based few-shot learning method for fish species identification with limited samples[J]. Animals, 2024, 14(5): 755.
  5. Lu J, Zhang S, Zhao S, et al. A metric-based few-shot learning method for fish species identification with limited samples[J]. Animals, 2024, 14(5): 755.
  6. Zhang S, An D, Liu J, et al. Dynamic decomposition graph convolutional neural network for SSVEP-based brain–computer interface[J]. Neural Networks, 2024, 172: 106075.
  7. Yu H, Wang Z, Qin H, et al. An automatic detection and counting method for fish lateral line scales of underwater fish based on improved YOLOv5[J]. IEEE Access, 2023, 11: 143616-143627.
  8. Huang H, Bian C, Wu M, et al. A novel integrated SOC–SOH estimation framework for whole-life-cycle lithium-ion batteries[J]. Energy, 2024, 288: 129801.
  9. Wang W, Li Z, Li W. Graph embedding-based heterogeneous domain adaptation with domain-invariant feature learning and distributional order preserving[J]. Neural Networks, 2024, 170: 427-440.
  10. Xu X, Du Z, Bai Z, et al. Fault diagnosis method of dissolved oxygen sensor electrolyte loss based on impedance measurement[J]. Computers and Electronics in Agriculture, 2023, 212: 108123.
  11. Liu C, Wang Z, Li Y, et al. Research progress of computer vision technology in abnormal fish detection[J]. Aquacultural Engineering, 2023, 103: 102350.
  12. Xu C, Wang Z, Du R, et al. A method for detecting uneaten feed based on improved YOLOv5[J]. Computers and Electronics in Agriculture, 2023, 212: 108101.
  13. Shao J, Gong B, Dai K, et al. Query-support semantic correlation mining for few-shot segmentation[J]. Engineering Applications of Artificial Intelligence, 2023, 126: 106797.
  14. Li D, Du Z, Wang Q, et al. Recent advances in acoustic technology for aquaculture: A review[J]. Reviews in Aquaculture, 2024, 16(1): 357-381.
  15. Zhang P, Li D. Automatic counting of lettuce using an improved YOLOv5s with multiple lightweight strategies[J]. Expert Systems with Applications, 2023, 226: 120220.
  16. Zhang P, Li D. CBAM+ ASFF-YOLOXs: An improved YOLOXs for guiding agronomic operation based on the identification of key growth stages of lettuce[J]. Computers and Electronics in Agriculture, 2022, 203: 107491.
  17. Li D, Li X, Wang Q, et al. Advanced techniques for the intelligent diagnosis of fish diseases: A review[J]. Animals, 2022, 12(21): 2938.
  18. Li X, Hao Y, Akhter M, et al. A novel automatic detection method for abnormal behavior of single fish using image fusion[J]. Computers and Electronics in Agriculture, 2022, 203: 107435.
  19. Du L, Lu Z, Li D. Broodstock breeding behaviour recognition based on Resnet50-LSTM with CBAM attention mechanism[J]. Computers and Electronics in Agriculture, 2022, 202: 107404.
  20. Li D, Zou M, Jiang L. Dissolved oxygen control strategies for water treatment: a review[J]. Water Science & Technology, 2022, 86(6): 1444-1466.
  21. Shi C, Zhao R, Liu C, et al. Underwater fish mass estimation using pattern matching based on binocular system[J]. Aquacultural Engineering, 2022, 99: 102285.
  22. Zhao R, Miao M, Lu J, et al. Formation control of multiple underwater robots based on ADMM distributed model predictive control[J]. Ocean Engineering, 2022, 257: 111585.