|
[1]
|
陈莹婷, 许振柱. 植物叶经济谱的研究进展[J]. 植物生态学报, 2014, 38(10): 1135-1153.
|
|
[2]
|
He, N., Liu, C., Piao, S., Sack, L., Xu, L., Luo, Y., He, J., Han, X., Zhou, G., Zhou, X., Lin, Y., Yu, Q., Liu, S., Sun, W., Niu, S., Li, S., Zhang, J. and Yu, G. (2019) Ecosystem Traits Linking Functional Traits to Macroecology. Trends in Ecology & Evolution, 34, 200-210. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Kattge, J., Díaz, S., Lavorel, S., et al. (2011) TRY—A Global Database of Plant Traits. Global Change Biology, 17, 2905-2935. [Google Scholar] [CrossRef]
|
|
[4]
|
Kobe, R.K., Pacala, S.W., Silander, J.A. and Canham, C.D. (1995) Juvenile Tree Survivorship as a Component of Shade Tolerance. Ecological Applications, 5, 517-532. [Google Scholar] [CrossRef]
|
|
[5]
|
Comas, L.H. and Eissenstat, D.M. (2009) Patterns in Root Trait Variation among 25 Co-Existing North American Forest Species. The New Phytologist, 182, 919-928. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
曲鹏, 邢亚娟, 王庆贵. 植物经济谱研究进展[J]. 中国农学通报, 2018, 34(10): 88-94.
|
|
[7]
|
李弘毅, 张兴, 曲彦婷, 高飞, 李雨桐, 张昊. 苏州市10种行道树植物叶经济谱性状对土壤重金属污染的响应[J]. 中国城市林业, 2023, 21(3): 7-16.
|
|
[8]
|
朱济友, 徐程扬, 覃国铭, 等. 3种典型绿化植物叶功能性状对大气污染的响应及其叶经济谱分析——以北京市为例[J]. 中南林业科技大学学报, 2019, 39(3): 91-98. [Google Scholar] [CrossRef]
|
|
[9]
|
de la Riva, E.G., Querejeta, J.I., Villar, R., Pérez-Ramos, I.M., Marañón, T., Galán Díaz, J., de Tomás Marín, S. and Prieto, I. (2021) The Economics Spectrum Drives Root Trait Strategies in Mediterranean Vegetation. Frontiers in Plant Science, 12, Article 773118. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Wang, R., Wang, Q., Zhao, N., Xu, Z., Zhu, X., Jiao, C., Yu, G. and He, N. (2018) Different Phylogenetic and Environmental Controls of First-Order Root Morphological and Nutrient Traits: Evidence of Multidimensional Root Traits. Functional Ecology, 32, 29-39. [Google Scholar] [CrossRef]
|
|
[11]
|
Pollock, L.J., Morris, W.K. and Vesk, P.A. (2012) The Role of Functional Traits in Species Distributions Revealed through a Hierarchical Model. Ecography, 35, 716-725. [Google Scholar] [CrossRef]
|
|
[12]
|
Bruelheide, H., Dengler, J., Purschke, O., et al. (2018) Global Trait-Environment Relationships of Plant Communities. Nature Ecology & Evolution, 2, 1906-1917. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
de la Riva, E.G., Olmo, M.P., Poorter, H., Ubera, J.L. and Villar, R. (2016) Leaf Mass per Area (LMA) and Its Relationship with Leaf Structure and Anatomy in 34 Mediterranean Woody Species along a Water Availability Gradient. PLOS ONE, 11, e0148788. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Medeiros, C.D., Scoffoni, C., John, G.P., Bartlett, M.K., In-man-Narahari, F.M., Ostertag, R., Cordell, S., Giardina, C.P. and Sack, L. (2018) An Extensive Suite of Functional Traits Distinguishes Hawaiian Wet and Dry Forests and Enables Prediction of Species Vital Rates. Functional Ecology, 33, 712-734. [Google Scholar] [CrossRef]
|
|
[15]
|
Neufeld, H.S. (1999) Plant Physiological Ecology. Ecology, 80, 1785-1787.
|
|
[16]
|
Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares, J.M., Chapin, T., Cornelissen, J.H., Diemer, M.W., Flexas, J., Garnier, E., Groom, P.K., Gulías, J., Hikosaka, K., Lamont, B.B., Lee, T.D., Lee, W., Lusk, C.H., Midgley, J.J., Navas, M., Niinemets, Ü., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L.D., Pyankov, V.I., Roumet, C., Thomas, S.C., Tjoelker, M.G., Veneklaas, E.J. and Villar, R. (2004) The Worldwide Leaf Economics Spectrum. Nature, 428, 821-827. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
张姗姗, 张兴, 曲彦婷, 等. 留园植物叶性状及其叶经济谱研究[J]. 北方园艺, 2022(14): 57-65.
|
|
[18]
|
Li, F.L., Liu, X. and Bao, W. (2016) Leaf Lifespan Is Positively Correlated with Pe-riods of Leaf Production and Reproduction in 49 Herb and Shrub Species. Ecology and Evolution, 6, 3822-3831.
|
|
[19]
|
Funk, J.L. and Cornwell, W.K. (2013) Leaf Traits within Communities: Context May Affect the Mapping of Traits to Function. Ecology, 94, 1893-1897. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Reich, P.B., Ellsworth, D.S., Walters, M.B., Vose, J.M., Gresham, C.A., Volin, J.C. and Bowman, W.D. (1999) Generality of Leaf Trait Relationships: A Test across Six Biomes. Ecology, 80, 1955-1969. [Google Scholar] [CrossRef]
|
|
[21]
|
Ordonez, A. and Olff, H. (2013) Do Alien Plant Species Profit More from High Resource Supply than Natives? A Trait-Based Analysis. Global Ecology and Biogeography, 22, 648-658. [Google Scholar] [CrossRef]
|
|
[22]
|
Heberling, J.M. and Fridley, J.D. (2013) Resource-Use Strategies of Native and Invasive Plants in Eastern North American Forests. The New Phytologist, 200, 523-533. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Liu, Y., Zhang, X.J. and Kleunen, M.V. (2018) Increases and Fluctuations in Nutrient Availability Do Not Promote Dominance of Alien Plants in Synthetic Communities of Common Natives. Functional Ecology, 32, 2594-2604. [Google Scholar] [CrossRef]
|
|
[24]
|
Sack, L. and Scoffoni, C. (2013) Leaf Venation: Structure, Function, Development, Evolution, Ecology and Applications in the Past, Present and Future. The New Phytologist, 198, 983-1000. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Mahmood, J., Lee, E.K., Jung, M., Shin, D., Jeon, I., Jung, S., Choi, H., Seo, J., Bae, S., Sohn, S., Park, N., Oh, J.H., Shin, H. and Baek, J. (2015) Nitrogenated Holey Two-Dimensional Structures. Nature Communications, 6, Article No. 6486. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Anten, N.P.R. (2016) Optimization and Game Theory in Canopy Models. In: Hikosaka, K., Niinemets, Ü. and Anten, N., Eds., Canopy Photosynthesis: From Basics to Applications, Springer, Dordrecht, 355-377. [Google Scholar] [CrossRef]
|
|
[27]
|
Chen, X., Sun, J., Wang, M., Lyu, M., Niklas, K., Michaletz, S.T., Zhong, Q. and Cheng, D. (2020) The Leaf Economics Spectrum Constrains Phenotypic Plasticity across a Light Gradient. Frontiers in Plant Science, 11, Article 530545. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Wright, I.J., Westoby, M. and Reich, P.B. (2002) Convergence to-wards Higher Leaf Mass per Area in Dry and Nutrient-Poor Habitats Has Different Consequences for Leaf Life Span. Journal of Ecology, 90, 534-543.
|
|
[29]
|
Lavorel, S. (2013) Plant Functional Effects on Ecosystem Services. Journal of Ecology, 101, 4-8. [Google Scholar] [CrossRef]
|
|
[30]
|
Xu, X., Medvigy, D.M., Joseph Wright, S., Kitajima, K., Wu, J., Albert, L.P., Martins, G.A., Saleska, S.R. and Pacala, S.W. (2017) Variations of Leaf Longevity in Tropical Moist Forests Predicted by a Trait-Driven Carbon Optimality Model. Ecology Letters, 20, 1097-1106. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Weemstra, M., Mommer, L., Visser, E.J., van Ruijven, J., Kuyper, T.W., Mohren, G.M. and Sterck, F.J. (2016) Towards a Multidimensional Root Trait Framework: A Tree Root Review. The New Phytologist, 211, 1159-1169. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Eissenstat, D.M. (2000) Root Structure and Function in an Ecological Context. The New Phytologist, 148, 353-354. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Liu, G., Freschet, G.T., Pan, X., Cornelissen, J.H., Li, Y. and Dong, M. (2010) Coordinated Variation in Leaf and Root Traits across Multiple Spatial Scales in Chinese Semi-Arid and Arid Ecosystems. The New Phytologist, 188, 543-553. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Valverde-Barrantes, O.J., Smemo, K.A. and Blackwood, C.B. (2015) Fine Root Morphology Is Phylogenetically Structured, But Nitrogen Is Related to the Plant Economics Spectrum in Temperate Trees. Functional Ecology, 29, 796-807. [Google Scholar] [CrossRef]
|
|
[35]
|
Jones, D.L., Nguyen, C. and Finlay, R.D. (2009) Carbon Flow in the Rhizosphere: Carbon Trading at the Soil-Root Interface. Plant and Soil, 321, 5-33. [Google Scholar] [CrossRef]
|
|
[36]
|
Kong, D., Wang, J., Wu, H., Valverde-Barrantes, O.J., Wang, R., Zeng, H., Kardol, P., Zhang, H. and Feng, Y. (2019) Nonlinearity of Root Trait Relationships and the Root Economics Spectrum. Nature Communications, 10, Article No. 2203. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
de Vries, F.T. and Bardgett, R.D. (2016) Plant Community Controls on Short-Term Ecosystem Nitrogen Retention. The New Phytologist, 210, 861-874. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Poorter, H., Jagodzinski, A.M., Ruiz-Peinado, R., Kuyah, S., Luo, Y., Oleksyn, J., Usoltsev, V., Buckley, T.N., Reich, P.B. and Sack, L. (2015) How Does Biomass Distribution Change with Size and Differ among Species? An Analysis for 1200 Plant Species from Five Continents. The New Phytologist, 208, 736-749. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Fortunel, C., Ruelle, J., Beauchêne, J., Fine, P.V. and Baraloto, C. (2014) Wood Specific Gravity and Anatomy of Branches and Roots in 113 Amazonian Rainforest Tree Species across Environmental Gradients. The New Phytologist, 202, 79-94. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Roumet, C., Birouste, M., Picon-Cochard, C., Ghestem, M., Osman, N., Vrignon-Brenas, S., Cao, K. and Stokes, A. (2016) Root Structure-Function Relationships in 74 Species: Evidence of a Root Economics Spectrum Related to Carbon Economy. The New Phytologist, 210, 815-826. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Kong, D., Wang, J., Zeng, H., Liu, M., Miao, Y., Wu, H. and Kardol, P. (2017) The Nutrient Absorption-Transportation Hypothesis: Optimizing Structural Traits in Absorptive Roots. The New Phytologist, 213, 1569-1572. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Warren, J.M., Hanson, P.J., Iversen, C.M., Kumar, J., Walker, A.P. and Wullschleger, S.D. (2015) Root Structural and Functional Dynamics in Terrestrial Biosphere Models—Evaluation and Recommendations. The New Phytologist, 205, 59-78. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Craine, J.M., Lee, W.G., Bond, W.J., Williams, R.J. and Johnson, L. (2005) Environmental Constraints on a Global Relationship among Leaf and Root Traits of Grasses. Ecology, 86, 12-19. [Google Scholar] [CrossRef]
|
|
[44]
|
Erktan, A., Roumet, C. and Munoz, F. (2022) Dissecting Fine Root Diameter Distribution at the Community Level Captures Root Morphological Diversity. Oikos.
|
|
[45]
|
Clark, L., Whalley, W.R., Barraclough, P.B. and Clark, L. (2004) How Do Roots Penetrate Strong Soil? Plant and Soil, 255, 93-104. [Google Scholar] [CrossRef]
|
|
[46]
|
Comas, L.H., Mueller, K.E., Taylor, L., Midford, P.E., Callahan, H.S. and Beerlingz, D.J. (2012) Evolutionary Patterns and Biogeochemical Significance of Angiosperm Root Traits. International Journal of Plant Sciences, 173, 584-595. [Google Scholar] [CrossRef]
|
|
[47]
|
Reich, P.B., Walters, M.B. and Ellsworth, D.S. (1992) Leaf Life-Span in Relation to Leaf, Plant, and Stand Characteristics among Diverse Ecosystems. Ecological Monographs, 62, 365-392. [Google Scholar] [CrossRef]
|
|
[48]
|
Cornelissen, J.H., Aerts, R., Cerabolini, B.E., Werger, M.J. and Heijden, M.V. (2001) Carbon Cycling Traits of Plant Species Are Linked with Mycorrhizal Strategy. Oecologia, 129, 611-619. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Koele, N., Dickie, I.A., Oleksyn, J., Richardson, S.J. and Reich, P.B. (2012) No Globally Consistent Effect of Ectomycorrhizal Status on Foliar Traits. The New Phytologist, 196, 845-852. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Comas, L.H., Callahan, H.S.and Midford, P.E. (2014) Patterns in Root Traits of Woody Species Hosting Arbuscular and Ectomycorrhizas: Implications for the Evolution of Belowground Strategies. Ecology and Evolution, 4, 2979-2990. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Kubisch, P., Hertel, D. and Leuschner, C. (2015) Do Ectomycorrhizal and Arbuscular Mycorrhizal Temperate Tree Species Systematically Differ in Root Order-Related Fine Root Morphology and Biomass? Frontiers in Plant Science, 6, Article 121858. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Maherali, H. (2014) Is There an Association between Root Architecture and Mycorrhizal Growth Response? The New Phytologist, 204, 192-200. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Reich, P.B., Walters, M.B., Tjoelker, M.G., Vanderklein, D.W. and Buschena, C. (1998) Photosynthesis and Respiration Rates Depend on Leaf and Root Morphology and Nitrogen Concentration in Nine Boreal Tree Species Differing in Relative Growth Rate. Functional Ecology, 12, 395-405. [Google Scholar] [CrossRef]
|